Suppr超能文献

用于双层膜中肽模拟的溶剂模型。II. 跨膜α螺旋

A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.

作者信息

Efremov R G, Nolde D E, Vergoten G, Arseniev A S

机构信息

M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117871 GSP, Russia.

出版信息

Biophys J. 1999 May;76(5):2460-71. doi: 10.1016/S0006-3495(99)77401-1.

Abstract

We describe application of the implicit solvation model (see the first paper of this series), to Monte Carlo simulations of several peptides in bilayer- and water-mimetic environments, and in vacuum. The membrane-bound peptides chosen were transmembrane segments A and B of bacteriorhodopsin, the hydrophobic segment of surfactant lipoprotein, and magainin2. Their conformations in membrane-like media are known from the experiments. Also, molecular dynamics study of surfactant lipoprotein with different explicit solvents has been reported (Kovacs, H., A. E. Mark, J. Johansson, and W. F. van Gunsteren. 1995. J. Mol. Biol. 247:808-822). The principal goal of this work is to compare the results obtained in the framework of our solvation model with available experimental and computational data. The findings could be summarized as follows: 1) structural and energetic properties of studied molecules strongly depend on the solvent; membrane-mimetic media significantly promote formation of alpha-helices capable of traversing the bilayer, whereas a polar environment destabilizes alpha-helical conformation via reduction of solvent-exposed surface area and packing; 2) the structures calculated in a membrane-like environment agree with the experimental ones; 3) noticeable differences in conformation of surfactant lipoprotein assessed via Monte Carlo simulation with implicit solvent (this work) and molecular dynamics in explicit solvent were observed; 4) in vacuo simulations do not correctly reproduce protein-membrane interactions, and hence should be avoided in modeling membrane proteins.

摘要

我们描述了隐式溶剂化模型(见本系列的第一篇论文)在双层和水模拟环境以及真空中对几种肽进行蒙特卡罗模拟的应用。所选择的膜结合肽是细菌视紫红质的跨膜片段A和B、表面活性剂脂蛋白的疏水片段以及蛙皮素2。它们在膜样介质中的构象已通过实验得知。此外,也有关于表面活性剂脂蛋白在不同显式溶剂中的分子动力学研究报道(科瓦奇,H.,A. E. 马克,J. 约翰松,以及W. F. 范冈斯特伦。1995年。《分子生物学杂志》247:808 - 822)。这项工作的主要目标是将在我们的溶剂化模型框架内获得的结果与现有的实验和计算数据进行比较。研究结果可总结如下:1)所研究分子的结构和能量性质强烈依赖于溶剂;膜模拟介质显著促进能够穿越双层的α - 螺旋的形成,而极性环境通过减少溶剂暴露表面积和堆积使α - 螺旋构象不稳定;2)在膜样环境中计算得到的结构与实验结构相符;3)观察到通过隐式溶剂的蒙特卡罗模拟(本工作)和显式溶剂中的分子动力学评估的表面活性剂脂蛋白构象存在显著差异;4)真空中的模拟不能正确再现蛋白质 - 膜相互作用,因此在膜蛋白建模中应避免使用。

相似文献

1
A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
Biophys J. 1999 May;76(5):2460-71. doi: 10.1016/S0006-3495(99)77401-1.
2
A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.
Biophys J. 1999 May;76(5):2448-59. doi: 10.1016/S0006-3495(99)77400-X.
8
9
Atomic solvation parameters for proteins in a membrane environment. Application to transmembrane alpha-helices.
J Biomol Struct Dyn. 1997 Aug;15(1):1-18. doi: 10.1080/07391102.1997.10508940.
10
Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides.
Mol Membr Biol. 2008 Apr;25(3):245-57. doi: 10.1080/09687680802020313.

引用本文的文献

3
Effect of membrane thickness on conformational sampling of phospholamban from computer simulations.
Biophys J. 2010 Mar 3;98(5):805-14. doi: 10.1016/j.bpj.2009.11.015.
5
Monte Carlo simulations of tBid association with the mitochondrial outer membrane.
Eur Biophys J. 2007 Dec;37(1):19-33. doi: 10.1007/s00249-007-0149-z. Epub 2007 Mar 21.
6
A generalized born implicit-membrane representation compared to experimental insertion free energies.
Biophys J. 2007 Apr 1;92(7):2338-49. doi: 10.1529/biophysj.106.081810. Epub 2007 Jan 11.
7
Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
Biophys J. 2003 Dec;85(6):3431-44. doi: 10.1016/S0006-3495(03)74765-1.
8
BPROMPT: A consensus server for membrane protein prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3698-700. doi: 10.1093/nar/gkg554.
9
Interaction of cardiotoxins with membranes: a molecular modeling study.
Biophys J. 2002 Jul;83(1):144-53. doi: 10.1016/S0006-3495(02)75156-4.
10

本文引用的文献

2
The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways.
Curr Opin Struct Biol. 1998 Feb;8(1):101-6. doi: 10.1016/s0959-440x(98)80016-x.
3
Engineering peptides and proteins that undergo alpha-to-beta transitions.
Curr Opin Struct Biol. 1997 Aug;7(4):501-8. doi: 10.1016/s0959-440x(97)80113-3.
4
Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin.
J Membr Biol. 1997 Apr 1;156(3):197-211. doi: 10.1007/s002329900201.
5
Folding proteins into membranes.
Nat Struct Biol. 1996 Oct;3(10):815-8. doi: 10.1038/nsb1096-815.
6
MOLMOL: a program for display and analysis of macromolecular structures.
J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4.
7
Electron-crystallographic refinement of the structure of bacteriorhodopsin.
J Mol Biol. 1996 Jun 14;259(3):393-421. doi: 10.1006/jmbi.1996.0328.
8
Molecular recognition between membrane-spanning polypeptides.
Trends Biochem Sci. 1995 Nov;20(11):460-4. doi: 10.1016/s0968-0004(00)89101-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验