Suppr超能文献

用于双层膜中肽模拟的溶剂模型。I. 促进膜内α-螺旋形成。

A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.

作者信息

Efremov R G, Nolde D E, Vergoten G, Arseniev A S

机构信息

M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117871 GSP, Russia.

出版信息

Biophys J. 1999 May;76(5):2448-59. doi: 10.1016/S0006-3495(99)77400-X.

Abstract

We describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting alpha-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides-poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation-were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of alpha-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed.

摘要

我们描述了一种用于蛋白质的高效溶剂化模型。在该模型中,开发了模仿膜的烃核心、水和弱极性溶剂(辛醇)的原子溶剂化参数。基于对原子疏水性的分析以及对氨基酸的气相 - 环己烷、气相 - 水和辛醇 - 水转移实验自由能的拟合,选择了最佳数量的溶剂化参数。将纳入ECEPP/2势能函数的溶剂化能项在一些具有已知双层 - 水和辛醇 - 水转移能量的小肽的蒙特卡罗模拟中进行了测试。计算结果表明与实验数据相当吻合。此外,该溶剂化模型用于评估促进膜形成的α - 螺旋的形成。为实现这一点,对处于初始无规卷曲构象的20个残基的同聚多肽——聚亮氨酸、聚缬氨酸、聚异亮氨酸和聚甘氨酸的全原子模型,在真空中以及在模拟双层水相和疏水部分的溶剂化条件下进行了无约束的蒙特卡罗构象搜索。所有肽在非极性环境中都表现出最大的螺旋形成倾向,其中聚亮氨酸、缬氨酸、异亮氨酸的最低能量构象分别显示出100%、95%和80%的α - 螺旋含量。结果表明,甘氨酸在所有环境中的能量和构象性质与具有疏水侧链的残基所观察到的不同。讨论了该溶剂化模型在膜存在下对肽和蛋白质模拟的应用以及该方法的局限性。

相似文献

1
A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.
Biophys J. 1999 May;76(5):2448-59. doi: 10.1016/S0006-3495(99)77400-X.
2
A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
Biophys J. 1999 May;76(5):2460-71. doi: 10.1016/S0006-3495(99)77401-1.
4
Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
J Mol Biol. 2000 Jul 28;300(5):1335-59. doi: 10.1006/jmbi.2000.3901.
5
Free energy determinants of secondary structure formation: I. alpha-Helices.
J Mol Biol. 1995 Sep 22;252(3):351-65. doi: 10.1006/jmbi.1995.0502.
7
Atomic solvation parameters for proteins in a membrane environment. Application to transmembrane alpha-helices.
J Biomol Struct Dyn. 1997 Aug;15(1):1-18. doi: 10.1080/07391102.1997.10508940.
8
Conformational analysis of endothelin-1: effects of solvation free energy.
Biopolymers. 1995 Sep;36(3):283-301. doi: 10.1002/bip.360360304.
9
10
Thermodynamic model of secondary structure for alpha-helical peptides and proteins.
Biopolymers. 1997 Aug;42(2):239-69. doi: 10.1002/(SICI)1097-0282(199708)42:2<239::AID-BIP12>3.0.CO;2-G.

引用本文的文献

1
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
3
A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain.
Int J Mol Sci. 2022 Aug 17;23(16):9221. doi: 10.3390/ijms23169221.
4
The Membrane-Water Partition Coefficients of Antifungal, but Not Antibacterial, Membrane-Active Compounds Are Similar.
Front Microbiol. 2021 Nov 5;12:756408. doi: 10.3389/fmicb.2021.756408. eCollection 2021.
5
Mapping hydrophobicity on the protein molecular surface at atom-level resolution.
PLoS One. 2014 Dec 2;9(12):e114042. doi: 10.1371/journal.pone.0114042. eCollection 2014.
6
Membrane protein native state discrimination by implicit membrane models.
J Comput Chem. 2013 Apr 5;34(9):731-8. doi: 10.1002/jcc.23189. Epub 2012 Dec 7.
8
Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids.
PLoS One. 2011 Apr 29;6(4):e19064. doi: 10.1371/journal.pone.0019064.

本文引用的文献

2
Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching.
Proteins. 1996 Nov;26(3):257-61. doi: 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B.
3
Dynamics of proteins in different solvent systems: analysis of essential motion in lipases.
Biophys J. 1996 Nov;71(5):2245-55. doi: 10.1016/S0006-3495(96)79428-6.
4
Insertion and hairpin formation of membrane proteins: a Monte Carlo study.
Biophys J. 1996 Sep;71(3):1248-55. doi: 10.1016/S0006-3495(96)79324-4.
5
Experimentally determined hydrophobicity scale for proteins at membrane interfaces.
Nat Struct Biol. 1996 Oct;3(10):842-8. doi: 10.1038/nsb1096-842.
6
Folding proteins into membranes.
Nat Struct Biol. 1996 Oct;3(10):815-8. doi: 10.1038/nsb1096-815.
7
Membrane proteins. Membrane protein structure.
Curr Opin Struct Biol. 1996 Aug;6(4):457-9. doi: 10.1016/s0959-440x(96)80109-6.
8
Free-energy determinants of alpha-helix insertion into lipid bilayers.
Biophys J. 1996 Apr;70(4):1803-12. doi: 10.1016/S0006-3495(96)79744-8.
9
Threshold hydrophobicity dictates helical conformations of peptides in membrane environments.
Biopolymers. 1996 Sep;39(3):465-70. doi: 10.1002/(sici)1097-0282(199609)39:3<465::aid-bip17>3.0.co;2-a.
10
MOLMOL: a program for display and analysis of macromolecular structures.
J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验