Suppr超能文献

葡萄球菌激酶激活纤溶酶原的结构和功能基础。

Structural and functional basis of plasminogen activation by staphylokinase.

作者信息

Jespers L, Vanwetswinkel S, Lijnen H R, Van Herzeele N, Van Hoef B, Demarsin E, Collen D, De Maeyer M

机构信息

Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium.

出版信息

Thromb Haemost. 1999 Apr;81(4):479-85.

Abstract

Staphylokinase (Sak), a 15.5-kDa bacterial protein, forms a complex with human plasmin, which in turn activates other plasminogen molecules to plasmin. Three recombinant DNA-based approaches, (i) site directed substitution with alanine, (ii) search for proximity relationships at the complex interface, and (iii) active-site accessibility to protease inhibitors have been used to deduce a coherent docking model of the crystal structure of Sak on the homology-based model of microplasmin (microPli), the serine protease domain of plasmin. Sak binding on microPli is primarily mediated by two surface-exposed loops, loops 174 and 215, at the rim of the active-site cleft, while the binding epitope of Sak on microPli involves several residues located in the flexible NH2-terminal arm and in the five-stranded mixed beta-sheet. Several Sak residues located within the unique alpha-helix and the beta2 strand do not contribute to the binding epitope but are essential to induce plasminogen activating potential in the Sak:microPli complex. These residues form a topologically distinct activation epitope, which, upon binding of Sak to the catalytic domain of microPli, protrudes into a broad groove near the catalytic triad of microPli, thereby generating a competent binding pocket for micro-plasminogen (microPlg), which buries approximately 2500 A of the Sak:microPli complex upon binding. This structural and functional model may serve as a template for the design of improved Sak-derived thrombolytic agents. Following the completion and presentation of the present study, the deduced Sak:microPli:microPlg complex was fully confirmed by X-ray crystallography, which further illustrates the power and potential of the present approach.

摘要

葡萄球菌激酶(Sak)是一种15.5千道尔顿的细菌蛋白,它与人纤溶酶形成复合物,进而将其他纤溶酶原分子激活为纤溶酶。基于重组DNA的三种方法,即(i)用丙氨酸进行定点取代,(ii)在复合物界面寻找邻近关系,以及(iii)蛋白酶抑制剂对活性位点的可及性,已被用于推导Sak晶体结构在微纤溶酶(microPli)(纤溶酶的丝氨酸蛋白酶结构域)的同源性模型上的连贯对接模型。Sak在microPli上的结合主要由活性位点裂隙边缘的两个表面暴露环,即环174和环215介导,而Sak在microPli上的结合表位涉及位于柔性NH2末端臂和五链混合β折叠中的几个残基。位于独特α螺旋和β2链内的几个Sak残基对结合表位没有贡献,但对于在Sak:microPli复合物中诱导纤溶酶原激活潜力至关重要。这些残基形成一个拓扑上不同的激活表位,当Sak与microPli的催化结构域结合时,该表位伸入microPli催化三联体附近的一个宽沟中,从而为微纤溶酶原(microPlg)产生一个合适的结合口袋,microPlg在结合时掩埋了Sak:microPli复合物约2500 Å的面积。这种结构和功能模型可作为设计改良的Sak衍生溶栓剂的模板。在本研究完成并发表后,推导的Sak:microPli:microPlg复合物通过X射线晶体学得到了充分证实,这进一步说明了本方法的威力和潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验