Yamagishi S, Kawakami T, Fujimori H, Yonekura H, Tanaka N, Yamamoto Y, Urayama H, Watanabe Y, Yamamoto H
Department of Biochemistry, Kanazawa University School of Medicine, Kanazawa, 920-8640, Japan.
Microvasc Res. 1999 May;57(3):329-39. doi: 10.1006/mvre.1999.2145.
Insulin treatment is known epidemiologically as an independent risk factor for the progression of diabetic retinopathy. However, how insulin exacerbates the retinopathy is not yet fully understood. In this study, we investigate the effects of insulin on the growth and tube formation of microvascular endothelial cells (EC). When human skin microvascular EC were grown under various concentrations of insulin, DNA synthesis as well as tube formation of EC was found to be significantly stimulated. We obtained evidence that it is mainly vascular endothelial growth factor (VEGF) that mediates the angiogenic activity of insulin as follows. (1) Insulin upregulates the level of mRNA coding for secretory forms of VEGF, while the expression of the two VEGF receptor genes, kinase insert domain-containing receptor (kdr) and fms-like tyrosine kinase1 (flt1), was essentially unchanged by exposure to insulin. (2) A monoclonal antibody against human VEGF can completely neutralize both the proliferation and the tube formation of EC induced by insulin. The angiogenic effects of insulin were additive with those of hypoxia, a principal factor that causes angiogenesis. Further, insulin significantly stimulated plasminogen activator inhibitor-1 activity in EC. The results thus suggest that insulin not only elicits angiogenesis through the induction of autocrine VEGF but also is a predisposing factor for thrombogenesis, which may give rise to focal ischemia that could superdrive angiogenesis, thereby leading to the exacerbation of diabetic retinopathy.