Suppr超能文献

谷氨酸受体通道的修饰:分子机制与功能后果

Modification of glutamate receptor channels: molecular mechanisms and functional consequences.

作者信息

Hatt H

机构信息

Ruhr University Bochum, Department of Cell-Physiology, Germany.

出版信息

Naturwissenschaften. 1999 Apr;86(4):177-86. doi: 10.1007/s001140050593.

Abstract

Of the many possible mechanisms for modulating the efficiency of ion channels, the phosphorylation of receptor channel proteins may be the primary one. Changes in the set of molecular subunits of which the channels are composed are also important, especially for long-term regulation. In the central nervous system synaptic plasticity may be altered by modulating the ligand-activated neuronal ion channels involved in synaptic transmission; among them are channels gated directly by glutamate, the regulation of which we are only beginning to understand. This paper focuses on modulation of these channels [alpha-amino-3-hydroxy-5-methyl-4-isoxazoleprionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) types] by phosphorylation and changes in subunit composition. AMPA- and kainate-activated receptors are modulated by adenosine 3,5-monophosphate (cAMP) dependent protein kinase A (PKA) coupled via D1 dopamine receptors. An increase in the intracellular concentration of cAMP and protein kinase A potentiates kainate-activated currents in alpha-motoneurons of the spinal cord by increasing the affinity of the ligand (glutamate) for the phosphorylated receptor protein (GluR6 and 7). The rapid desensitization of AMPA-evoked currents normally observed in horizontal cells of the retina is completely blocked by increasing the intracellular concentration of cAMP. The effects of changes in subunit composition were examined in rat hippocampal neurons. The subunit composition of the NMDA receptor determines the kinetic properties of synaptic currents and can be regulated by the type of innervating neuron. Similar changes also occur during development. An important determinant here is the activity of the system. Dynamic regulation of excitatory receptors by both mechanisms may well be associated with some forms of learning and memory in the mammalian brain.

摘要

在众多调节离子通道效率的可能机制中,受体通道蛋白的磷酸化可能是主要机制。通道所由组成的分子亚基组合的变化也很重要,特别是对于长期调节而言。在中枢神经系统中,突触可塑性可通过调节参与突触传递的配体激活的神经元离子通道来改变;其中包括直接由谷氨酸门控的通道,而我们对其调节的了解才刚刚开始。本文重点关注这些通道[α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)、海人酸和N-甲基-D-天冬氨酸(NMDA)类型]通过磷酸化和亚基组成变化所进行的调节。AMPA和海人酸激活的受体由通过D1多巴胺受体偶联的3,5-环磷酸腺苷(cAMP)依赖性蛋白激酶A(PKA)调节。cAMP和蛋白激酶A细胞内浓度的增加通过增加配体(谷氨酸)对磷酸化受体蛋白(GluR6和7)的亲和力来增强脊髓α运动神经元中海人酸激活的电流。在视网膜水平细胞中通常观察到的AMPA诱发电流迅速脱敏可通过增加cAMP细胞内浓度而完全阻断。在大鼠海马神经元中研究了亚基组成变化的影响。NMDA受体的亚基组成决定突触电流的动力学特性,并可由支配神经元的类型调节。在发育过程中也会发生类似的变化。这里一个重要的决定因素是该系统的活性。这两种机制对兴奋性受体的动态调节很可能与哺乳动物大脑中的某些学习和记忆形式有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验