Qi C, Zhu Y, Pan J, Usuda N, Maeda N, Yeldandi A V, Rao M S, Hashimoto T, Reddy J K
Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
J Biol Chem. 1999 May 28;274(22):15775-80. doi: 10.1074/jbc.274.22.15775.
Peroxisomes contain a classical L-hydroxy-specific peroxisome proliferator-inducible beta-oxidation system and also a second noninducible D-hydroxy-specific beta-oxidation system. We previously generated mice lacking fatty acyl-CoA oxidase (AOX), the first enzyme of the L-hydroxy-specific classical beta-oxidation system; these AOX-/- mice exhibited sustained activation of peroxisome proliferator-activated receptor alpha (PPARalpha), resulting in profound spontaneous peroxisome proliferation in liver cells. These observations implied that AOX is responsible for the metabolic degradation of PPARalpha ligands. In this study, the function of enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase (L-PBE), the second enzyme of this peroxisomal beta-oxidation system, was investigated by disrupting its gene. Mutant mice (L-PBE-/-) were viable and fertile and exhibited no detectable gross phenotypic defects. L-PBE-/- mice showed no hepatic steatosis and manifested no spontaneous peroxisome proliferation, unlike that encountered in livers of mice deficient in AOX. These results indicate that disruption of classical peroxisomal fatty acid beta-oxidation system distal to AOX step does not interfere with the inactivation of endogenous ligands of PPARalpha, further confirming that the AOX gene is indispensable for the physiological regulation of this receptor. The absence of appreciable changes in lipid metabolism also indicates that enoyl-CoAs, generated in the classical system in L-PBE-/- mice are diverted to D-hydroxy-specific system for metabolism by D-PBE. When challenged with a peroxisome proliferator, L-PBE-/- mice showed increases in the levels of hepatic mRNAs and proteins that are regulated by PPARalpha except for appreciable blunting of peroxisome proliferative response as compared with that observed in hepatocytes of wild type mice similarly treated. This blunting of peroxisome proliferative response is attributed to the absence of L-PBE protein in L-PBE-/- mouse liver, because all other proteins are induced essentially to the same extent in both wild type and L-PBE-/- mice.
过氧化物酶体含有一个典型的L-羟基特异性过氧化物酶体增殖物诱导型β-氧化系统,还含有第二个非诱导型D-羟基特异性β-氧化系统。我们之前培育出了缺乏脂肪酰基辅酶A氧化酶(AOX)的小鼠,AOX是L-羟基特异性经典β-氧化系统的第一种酶;这些AOX-/-小鼠表现出过氧化物酶体增殖物激活受体α(PPARα)的持续激活,导致肝细胞中出现显著的自发性过氧化物酶体增殖。这些观察结果表明,AOX负责PPARα配体的代谢降解。在本研究中,通过破坏过氧化物酶体β-氧化系统的第二种酶烯酰辅酶A水合酶/L-3-羟基酰基辅酶A脱氢酶(L-PBE)的基因,对其功能进行了研究。突变小鼠(L-PBE-/-)存活且可育,未表现出可检测到的明显表型缺陷。与AOX缺陷小鼠的肝脏不同,L-PBE-/-小鼠未出现肝脂肪变性,也未表现出自发性过氧化物酶体增殖。这些结果表明,在AOX步骤之后破坏经典的过氧化物酶体脂肪酸β-氧化系统不会干扰PPARα内源性配体的失活,进一步证实AOX基因对于该受体的生理调节是不可或缺的。脂质代谢没有明显变化也表明,L-PBE-/-小鼠经典系统中产生的烯酰辅酶A被转移到D-羟基特异性系统,由D-PBE进行代谢。当用一种过氧化物酶体增殖剂进行刺激时,与同样处理的野生型小鼠肝细胞相比,L-PBE-/-小鼠肝脏中受PPARα调节的mRNA和蛋白质水平有所升高,但过氧化物酶体增殖反应明显减弱。过氧化物酶体增殖反应的这种减弱归因于L-PBE-/-小鼠肝脏中缺乏L-PBE蛋白,因为在野生型和L-PBE-/-小鼠中,所有其他蛋白质的诱导程度基本相同。