Pons J, Rajpal A, Kirsch J F
Department of Chemistry, University of California, and Center for Advanced Materials, Lawrence Berkeley National Laboratory, Berkeley 94720, USA.
Protein Sci. 1999 May;8(5):958-68. doi: 10.1110/ps.8.5.958.
Alanine scanning mutagenesis of the HyHEL-10 paratope of the HyHEL-10/HEWL complex demonstrates that the energetically important side chains (hot spots) of both partners are in contact. A plot of deltadeltaG(HyHEL-10_mutant) vs. deltadeltaG(HEWL_mutant) for the five of six interacting side-chain hydrogen bonds is linear (Slope = 1). Only 3 of the 13 residues in the HEWL epitope contribute >4 kcal/mol to the free energy of formation of the complex when replaced by alanine, but 6 of the 12 HyHEL-10 paratope amino acids do. Double mutant cycle analysis of the single crystallographically identified salt bridge, D32H/K97, shows that there is a significant energetic penalty when either partner is replaced with a neutral side-chain amino acid, but the D32(H)N/K97M complex is as stable as the WT. The role of the disproportionately high number of Tyr residues in the CDR was evaluated by comparing the deltadeltaG values of the Tyr --> Phe vs. the corresponding Tyr --> Ala mutations. The nonpolar contacts in the light chain contribute only about one-half of the total deltadeltaG observed for the Tyr --> Ala mutation, while they are significantly more important in the heavy chain. Replacement of the N31L/K96 hydrogen bond with a salt bridge, N31D(L)/K96, destabilizes the complex by 1.4 kcal/mol. The free energy of interaction, deltadeltaG(int), obtained from double mutant cycle analysis showed that deltadeltaG(int) for any complex for which the HEWL residue probed is a major immunodeterminant is very close to the loss of free energy observed for the HyHEL-10 single mutant. Error propagation analysis of double mutant cycles shows that data of atypically high precision are required to use this method meaningfully, except where large deltadeltaG values are analyzed.
对HyHEL-10/HEWL复合物的HyHEL-10互补决定区进行丙氨酸扫描诱变,结果表明两个相互作用伙伴的能量重要侧链(热点)相互接触。六个相互作用侧链氢键中的五个的ΔΔG(HyHEL-10突变体)与ΔΔG(HEWL突变体)的关系图呈线性(斜率 = 1)。当被丙氨酸取代时,HEWL表位中的13个残基中只有3个对复合物形成的自由能贡献>4 kcal/mol,但HyHEL-10互补决定区的12个氨基酸中有6个有这样的贡献。对单个晶体学鉴定的盐桥D32H/K97进行双突变循环分析表明,当任何一个伙伴被中性侧链氨基酸取代时,都会有显著的能量损失,但D32(H)N/K97M复合物与野生型一样稳定。通过比较酪氨酸→苯丙氨酸与相应酪氨酸→丙氨酸突变的ΔΔG值,评估了互补决定区中数量过多的酪氨酸残基的作用。轻链中的非极性接触对酪氨酸→丙氨酸突变所观察到的总ΔΔG的贡献仅约为一半,而它们在重链中则重要得多。用盐桥N31D(L)/K96取代N31L/K96氢键会使复合物的稳定性降低1.4 kcal/mol。从双突变循环分析获得的相互作用自由能ΔΔG(int)表明,对于任何HEWL残基被探测为主要免疫决定簇的复合物,其ΔΔG(int)非常接近HyHEL-10单突变体所观察到的自由能损失。双突变循环的误差传播分析表明,除了分析大的ΔΔG值的情况外,要想有意义地使用该方法需要非典型高精度的数据。