Goldman E R, Dall'Acqua W, Braden B C, Mariuzza R A
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA.
Biochemistry. 1997 Jan 7;36(1):49-56. doi: 10.1021/bi961769k.
The idiotope-antiidiotope complex between the anti-hen egg white lysozyme antibody D1.3 and the anti-D1.3 antibody E5.2 provides a useful model for studying protein-protein interactions. A high-resolution crystal structure of the complex is available [Fields, B. A., Goldbaum, F. A., Ysern, X., Poljak, R.J., & Mariuzza, R. A. (1995) Nature 374, 739-742], and both components are easily produced and manipulated in Escherichia coli. We previously analyzed the relative contributions of individual residues of D1.3 to complex stabilization by site-directed mutagenesis [Dall'Acqua, W., Goldman, E. R., Eisenstein, E., & Mariuzza, R. A. (1996) Biochemistry 35, 9667-9676]. In the current work, we introduced single alanine substitutions in 9 out of 21 positions in the combining site of E5.2 involved in contacts with D1.3 and found that 8 of them play a significant role in ligand binding (delta Gmutant-delta Gwild type > 1.5 kcal/mol). Furthermore, energetically important E5.2 and D1.3 residues tend to be juxtaposed in the crystal structure of the complex. In order to further dissect the energetics of specific interactions in the D1.3-E5.2 interface, double mutant cycles were carried out to measure the coupling of 13 amino acid pairs, 9 of which are in direct contact in the crystal structure. The highest coupling energy (4.3 kcal/mol) was measured for a charged-neutral pair which forms a buried hydrogen bond, while side chains which interact through solvated hydrogen bonds have lower coupling energies (1.3-1.7 kcal/mol), irrespective of whether they involve charged-neutral or neutral-neutral pairs. Interaction energies of similar magnitude (1.3-1.6 kcal/mol) were measured for residues forming only van der Waals contacts. Cycles between distant residues not involved in direct contacts in the crystal structure also showed significant coupling (0.5-1.0 kcal/mol). These weak long-range interactions could be due to rearrangements in solvent or protein structure or to secondary interactions involving other residues.
抗鸡蛋白溶菌酶抗体D1.3与抗D1.3抗体E5.2之间的独特型-抗独特型复合物为研究蛋白质-蛋白质相互作用提供了一个有用的模型。该复合物的高分辨率晶体结构已可得[菲尔兹,B.A.,戈德鲍姆,F.A.,伊斯恩,X.,波利亚克,R.J.,& 马里乌扎,R.A.(1995年)《自然》374卷,739 - 742页],并且两种成分都易于在大肠杆菌中产生和操作。我们之前通过定点诱变分析了D1.3中各个残基对复合物稳定性的相对贡献[达尔·阿夸,W.,戈德曼,E.R.,艾森斯坦,E.,& 马里乌扎,R.A.(1996年)《生物化学》35卷,9667 - 9676页]。在当前工作中,我们在E5.2与D1.3接触的结合位点的21个位置中的9个位置引入了单个丙氨酸替代,发现其中8个在配体结合中起重要作用(ΔG突变体 - ΔG野生型> 1.5千卡/摩尔)。此外,在复合物的晶体结构中,能量上重要的E5.2和D1.3残基倾向于并列。为了进一步剖析D1.3 - E5.2界面中特定相互作用的能量学,进行了双突变循环以测量13对氨基酸的偶联,其中9对在晶体结构中直接接触。对于形成埋藏氢键的带电 - 中性对,测量到最高的偶联能量(4.3千卡/摩尔),而通过溶剂化氢键相互作用的侧链具有较低的偶联能量(1.3 - 1.7千卡/摩尔),无论它们涉及带电 - 中性对还是中性 - 中性对。对于仅形成范德华接触的残基,测量到相似大小的相互作用能量(1.3 - 1.6千卡/摩尔)。在晶体结构中不涉及直接接触的远距离残基之间的循环也显示出显著的偶联(0.5 - 1.0千卡/摩尔)。这些弱的远程相互作用可能是由于溶剂或蛋白质结构的重排,或者是由于涉及其他残基的二级相互作用。