Pleissner K P, Hoffmann F, Kriegel K, Wenk C, Wegner S, Sahlström A, Oswald H, Alt H, Fleck E
Department of Internal Medicine/Cardiology, Charité, Campus Virchow-Clinic, Humboldt University and German Heart Institute, Berlin.
Electrophoresis. 1999 Apr-May;20(4-5):755-65. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<755::AID-ELPS755>3.0.CO;2-6.
Protein spot identification in two-dimensional electrophoresis gels can be supported by the comparison of gel images accessible in different World Wide Web two-dimensional electrophoresis (2-DE) gel protein databases. The comparison may be performed either by visual cross-matching between gel images or by automatic recognition of similar protein spot patterns. A prerequisite for the automatic point pattern matching approach is the detection of protein spots yielding the x(s),y(s) coordinates and integrated spot intensities i(s). For this purpose an algorithm is developed based on a combination of hierarchical watershed transformation and feature extraction methods. This approach reduces the strong over-segmentation of spot regions normally produced by watershed transformation. Measures for the ellipticity and curvature are determined as features of spot regions. The resulting spot lists containing x(s),y(s),i(s)-triplets are calculated for a source as well as for a target gel image accessible in 2-DE gel protein databases. After spot detection a matching procedure is applied. Both the matching of a local pattern vs. a full 2-DE gel image and the global matching between full images are discussed. Preset slope and length tolerances of pattern edges serve as matching criteria. The local matching algorithm relies on a data structure derived from the incremental Delaunay triangulation of a point set and a two-step hashing technique. For the incremental construction of triangles the spot intensities are considered in decreasing order. The algorithm needs neither landmarks nor an a priori image alignment. A graphical user interface for spot detection and gel matching is written in the Java programming language for the Internet. The software package called CAROL (http://gelmatching.inf.fu-berlin.de) is realized in a client-server architecture.
二维电泳凝胶中的蛋白质点鉴定可以通过比较不同万维网二维电泳(2-DE)凝胶蛋白质数据库中可获取的凝胶图像来辅助。这种比较可以通过凝胶图像之间的视觉交叉匹配或通过自动识别相似蛋白质点模式来进行。自动点模式匹配方法的一个前提是检测出能给出x(s)、y(s)坐标和积分点强度i(s)的蛋白质点。为此,开发了一种基于分层分水岭变换和特征提取方法相结合的算法。这种方法减少了通常由分水岭变换产生的点区域的过度分割。确定椭圆率和曲率的度量作为点区域的特征。为二维凝胶蛋白质数据库中可获取的源凝胶图像和目标凝胶图像计算出包含x(s)、y(s)、i(s)三元组的结果点列表。在点检测之后应用匹配程序。讨论了局部模式与完整二维凝胶图像的匹配以及完整图像之间的全局匹配。模式边缘的预设斜率和长度容差用作匹配标准。局部匹配算法依赖于从点集的增量德劳内三角剖分导出的数据结构和两步哈希技术。对于三角形的增量构建,按强度递减顺序考虑点强度。该算法既不需要地标也不需要先验图像对齐。用于点检测和凝胶匹配的图形用户界面是用Java编程语言为互联网编写的。名为CAROL(http://gelmatching.inf.fu-berlin.de)的软件包是在客户端-服务器架构中实现的。