Suppr超能文献

青枯雷尔氏菌单细胞中受调控的eps基因表达的定量免疫荧光分析

Quantitative immunofluorescence of regulated eps gene expression in single cells of Ralstonia solanacearum.

作者信息

Kang Y, Saile E, Schell M A, Denny T P

机构信息

Departments of Plant Pathology, The University of Georgia, Athens, Georgia 30602, USA.

出版信息

Appl Environ Microbiol. 1999 Jun;65(6):2356-62. doi: 10.1128/AEM.65.6.2356-2362.1999.

Abstract

Ralstonia solanacearum, a phytopathogenic bacterium, uses an environmentally sensitive and complex regulatory network to control expression of multiple virulence genes. Part of this network is an unusual autoregulatory system that produces and senses 3-hydroxypalmitic acid methyl ester. In culture, this autoregulatory system ensures that expression of virulence genes, such as those of the eps operon encoding biosynthesis of the acidic extracellular polysaccharide, occurs only at high cell density (>10(7) cells/ml). To determine if regulation follows a similar pattern within tomato plants, we first developed a quantitative immunofluorescence (QIF) method that measures the relative amount of a target protein within individual bacterial cells. For R. solanacearum, QIF was used to determine the amount of beta-galactosidase protein within wild-type cells containing a stable eps-lacZ reporter allele. When cultured cells were examined to test the method, QIF accurately detected both low and high levels of eps gene expression. QIF analysis of R. solanacearum cells recovered from stems of infected tomato plants showed that expression of eps during pathogenesis was similar to that in culture. These results suggest that there are no special signals or conditions within plants that override or short-circuit the regulatory processes observed in R. solanacearum in culture. Because QIF is a robust, relatively simple procedure that uses generally accessible equipment, it should be useful in many situations where gene expression in single bacterial cells must be determined.

摘要

青枯雷尔氏菌是一种植物致病细菌,它利用一个对环境敏感且复杂的调控网络来控制多个毒力基因的表达。该网络的一部分是一个不同寻常的自我调控系统,该系统产生并感知3-羟基棕榈酸甲酯。在培养过程中,这个自我调控系统确保毒力基因的表达,比如那些编码酸性细胞外多糖生物合成的eps操纵子中的基因,仅在高细胞密度(>10⁷个细胞/毫升)时发生。为了确定在番茄植株内调控是否遵循类似模式,我们首先开发了一种定量免疫荧光(QIF)方法,该方法可测量单个细菌细胞内目标蛋白的相对量。对于青枯雷尔氏菌,QIF用于确定含有稳定的eps-lacZ报告等位基因的野生型细胞内β-半乳糖苷酶蛋白的量。当检测培养细胞以测试该方法时,QIF准确地检测到了eps基因的低水平和高水平表达。对从受感染番茄植株茎中回收的青枯雷尔氏菌细胞进行的QIF分析表明,发病过程中eps的表达与培养中的表达相似。这些结果表明,植物体内不存在特殊信号或条件来推翻或绕过在青枯雷尔氏菌培养中观察到的调控过程。由于QIF是一个稳健、相对简单的程序,使用的是一般可获取的设备,它在许多必须确定单个细菌细胞中基因表达的情况下应该会很有用。

相似文献

1
Quantitative immunofluorescence of regulated eps gene expression in single cells of Ralstonia solanacearum.
Appl Environ Microbiol. 1999 Jun;65(6):2356-62. doi: 10.1128/AEM.65.6.2356-2362.1999.
4
The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato.
Phytopathology. 2012 Mar;102(3):244-51. doi: 10.1094/PHYTO-10-11-0277.
7
Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by φRSM filamentous phages.
Phytopathology. 2012 May;102(5):469-77. doi: 10.1094/PHYTO-11-11-0319-R.
10
Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt.
Mol Microbiol. 2004 Sep;53(6):1641-60. doi: 10.1111/j.1365-2958.2004.04237.x.

引用本文的文献

1
Lectins and polysaccharide EPS I have flow-responsive roles in the attachment and biofilm mechanics of plant pathogenic Ralstonia.
PLoS Pathog. 2024 Sep 23;20(9):e1012358. doi: 10.1371/journal.ppat.1012358. eCollection 2024 Sep.
2
Cell Density-Regulated Adhesins Contribute to Early Disease Development and Adhesion in Ralstonia solanacearum.
Appl Environ Microbiol. 2023 Feb 28;89(2):e0156522. doi: 10.1128/aem.01565-22. Epub 2023 Jan 23.
3
Genome-Scale Metabolic Model of pv. : An Approach to Elucidate Pathogenicity at the Metabolic Level.
Front Genet. 2020 Aug 11;11:837. doi: 10.3389/fgene.2020.00837. eCollection 2020.
6
Xanthan induces plant susceptibility by suppressing callose deposition.
Plant Physiol. 2006 May;141(1):178-87. doi: 10.1104/pp.105.074542. Epub 2006 Mar 10.
7
Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri.
J Bacteriol. 2005 Feb;187(3):1201-5. doi: 10.1128/JB.187.3.1201-1205.2005.
8
Single-cell microbiology: tools, technologies, and applications.
Microbiol Mol Biol Rev. 2004 Sep;68(3):538-59, table of contents. doi: 10.1128/MMBR.68.3.538-559.2004.
9
Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
Appl Environ Microbiol. 2001 Aug;67(8):3363-70. doi: 10.1128/AEM.67.8.3363-3370.2001.
10
Ralstonia solanacearum needs motility for invasive virulence on tomato.
J Bacteriol. 2001 Jun;183(12):3597-605. doi: 10.1128/JB.183.12.3597-3605.2001.

本文引用的文献

1
The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis.
Annu Rev Phytopathol. 1995;33:345-68. doi: 10.1146/annurev.py.33.090195.002021.
3
A single-cell assay of beta-galactosidase in recombinant Escherichia coli using flow cytometry.
Biotechnol Bioeng. 1993 Sep 5;42(6):708-15. doi: 10.1002/bit.260420605.
4
Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum.
Annu Rev Phytopathol. 1991;29:65-87. doi: 10.1146/annurev.py.29.090191.000433.
5
Solutes in the free space of growing stem tissues.
Plant Physiol. 1983 Jun;72(2):326-31. doi: 10.1104/pp.72.2.326.
6
Differential Expression of Virulence Genes and Motility in Ralstonia (Pseudomonas) solanacearum during Exponential Growth.
Appl Environ Microbiol. 1997 Mar;63(3):844-50. doi: 10.1128/aem.63.3.844-850.1997.
7
Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy.
Appl Environ Microbiol. 1992 Aug;58(8):2444-8. doi: 10.1128/aem.58.8.2444-2448.1992.
8
The role of hrp genes during plant-bacterial interactions.
Annu Rev Phytopathol. 1997;35:129-52. doi: 10.1146/annurev.phyto.35.1.129.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验