Huang J, Yindeeyoungyeon W, Garg R P, Denny T P, Schell M A
Department of Microbiology, University of Georgia, Athens, Georgia 30602-2604, USA.
J Bacteriol. 1998 May;180(10):2736-43. doi: 10.1128/JB.180.10.2736-2743.1998.
Ralstonia (Pseudomonas) solanacearum is a soil-borne phytopathogen that causes a wilting disease of many important crops. It makes large amounts of the exopolysaccharide EPS I, which it requires for efficient colonization, wilting, and killing of plants. Transcription of the eps operon, encoding biosynthetic enzymes for EPS I, is controlled by a unique and complex sensory network that responds to multiple environmental signals. This network is comprised of the novel transcriptional activator XpsR, three distinct two-component regulatory systems (VsrAD, VsrBC, and PhcSR), and the LysR-type regulator PhcA, which is under the control of PhcSR. Here we show that the xpsR promoter (PxpsR) is simultaneously controlled by PhcA and VsrD, permitting XpsR to act like a signal integrator, simultaneously coordinating signal input into the eps promoter from both VsrAD and PhcSR. Additionally, we used in vivo expression analysis and in vitro DNA binding assays with substitution and deletion mutants of PxpsR to show the following. (i) PhcA primarily interacts with a typical 14-bp LysR-type consensus sequence around position -77, causing a sixfold activation of PxpsR; a weaker, less-defined binding site between -183 and -239 likely enhances PhcA binding and activation via the -77 site another twofold. (ii) Full 70-fold activation of PxpsR requires the additional interaction of the VsrD response regulator (or its surrogate) with a 14-bp dyadic sequence centered around -315 where it enhances activation (and possibly binding) by PhcA; however, VsrD alone cannot activate PxpsR. (iii) Increasing the distance between the putative VsrD binding site from that of PhcA by up to 232 bp did not dramatically affect PxpsR activation or regulation.
青枯雷尔氏菌(假单胞菌属)是一种土壤传播的植物病原体,可导致许多重要作物发生萎蔫病。它会产生大量的胞外多糖EPS I,这是其有效定殖、使植物萎蔫和致死所必需的。编码EPS I生物合成酶的eps操纵子的转录受一个独特而复杂的传感网络控制,该网络对多种环境信号作出反应。这个网络由新型转录激活因子XpsR、三个不同的双组分调节系统(VsrAD、VsrBC和PhcSR)以及受PhcSR控制的LysR型调节因子PhcA组成。在这里,我们表明xpsR启动子(PxpsR)同时受PhcA和VsrD的控制,使XpsR能够像信号整合器一样发挥作用,同时协调来自VsrAD和PhcSR的信号输入到eps启动子中。此外,我们使用体内表达分析以及对PxpsR的替代和缺失突变体进行体外DNA结合试验,得出以下结果。(i)PhcA主要与 -77位附近一个典型的14 bp LysR型共有序列相互作用,使PxpsR激活六倍; -183至 -239之间一个较弱、不太明确的结合位点可能通过 -77位点增强PhcA的结合和激活作用两倍。(ii)PxpsR的完全70倍激活需要VsrD反应调节因子(或其替代物)与以 -315为中心的14 bp二元序列进行额外相互作用,在该序列处它增强了PhcA的激活作用(可能还有结合作用);然而,单独的VsrD不能激活PxpsR。(iii)将假定的VsrD结合位点与PhcA结合位点之间的距离增加多达232 bp,对PxpsR的激活或调节没有显著影响。