Suppr超能文献

使用概率神经网络和逻辑回归估计结直肠癌患者的肿瘤分期和淋巴结状态。

Estimation of tumor stage and lymph node status in patients with colorectal adenocarcinoma using probabilistic neural networks and logistic regression.

作者信息

Singson R P, Alsabeh R, Geller S A, Marchevsky A

机构信息

Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.

出版信息

Mod Pathol. 1999 May;12(5):479-84.

Abstract

Staging colorectal adenocarcinoma on the basis of biopsy specimens could identify patients who might benefit from neoadjuvant therapy without undergoing resection first. In this study, we evaluated the ability of artificial neural networks with genetic algorithms and multivariate logistic regression to predict the stage of 99 patients with primary colorectal adenocarcinoma by analyzing age, tumor grade, and immunoreactivity to p53 and bcl-2 with use of endoscopically obtained biopsy specimens. We correlated results with regional lymph node status and tumor stage, identified in subsequent colectomy specimens. bcl-2 and p53 protein expression were demonstrated by immunohistochemical methods, using formalin-fixed, paraffin-embedded biopsy tissues. Tumor grade was evaluated in hematoxylinand eosin-stained sections. Patients were divided into training (n = 75) and testing cases (n = 24). Several probabilistic neural networks with genetic algorithm models were trained, using the four prognostic features as input neurons and regional lymph node status or stage as output neurons. Data were analyzed with univariate statistics and multivariate logistic regression. The cases were divided into training (n = 40) and testing (n = 59). The best two models classified correctly the lymph node status of 20 of 24 test patients (specificity, 80%; sensitivity, 85%; positive predictive value, 86%) and the tumor stage of 21 of 24 test patients (specificity, 82%; sensitivity, 92%; positive predictive value, 85%), respectively. Tumor grade and p53 protein were statistically significant (P < .05) by analysis of variance for lymph node status and tumor stage. Logistic regression models with these two independent variables correctly estimated the probability of lymph node metastases in 44 of 59 test cases and the tumor stage of 43 of 59 test cases, respectively. Results indicated the usefulness of probabilistic neural networks in the population studied, but the findings should be validated with large groups of patients.

摘要

基于活检标本对结直肠癌进行分期可以识别出那些可能无需先进行切除手术就从新辅助治疗中获益的患者。在本研究中,我们通过分析99例原发性结直肠癌患者的年龄、肿瘤分级以及对p53和bcl-2的免疫反应性,利用内镜获取的活检标本,评估了带有遗传算法的人工神经网络和多变量逻辑回归预测分期的能力。我们将结果与在后续结肠切除术标本中确定的区域淋巴结状态和肿瘤分期进行关联。采用免疫组化方法,使用福尔马林固定、石蜡包埋的活检组织来检测bcl-2和p53蛋白表达。在苏木精-伊红染色切片中评估肿瘤分级。患者被分为训练组(n = 75)和测试组(n = 24)。使用四个预后特征作为输入神经元,区域淋巴结状态或分期作为输出神经元,训练了几个带有遗传算法模型的概率神经网络。数据采用单变量统计和多变量逻辑回归进行分析。这些病例被分为训练组(n = 40)和测试组(n = 59)。最佳的两个模型分别正确分类了24例测试患者中20例的淋巴结状态(特异性,80%;敏感性,85%;阳性预测值,86%)以及24例测试患者中21例的肿瘤分期(特异性,82%;敏感性,92%;阳性预测值,85%)。通过方差分析,肿瘤分级和p53蛋白对于淋巴结状态和肿瘤分期具有统计学意义(P < 0.05)。具有这两个独立变量的逻辑回归模型分别正确估计了59例测试病例中44例的淋巴结转移概率和59例测试病例中43例的肿瘤分期。结果表明概率神经网络在所研究人群中是有用的,但这些发现应在大量患者中进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验