Heinbockel T, Christensen T A, Hildebrand J G
Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson 85721-0077, USA.
J Comp Neurol. 1999 Jun 21;409(1):1-12.
By means ofintracellular recording and staining, we studied the ability of several distinct classes of projection (output) neurons, which innervate the sexually dimorphic macroglomerular complex (MGC-PNs) in the antennal lobe of the male moth Manduca sexta, to encode naturally intermittent sex pheromonal stimuli. In many MGC-PNs, antennal stimulation with a blend of the two essential pheromone components evoked a characteristic triphasic response consisting of a brief, hyperpolarizing inhibitory potential (I1) followed by depolarization with firing of action potentials and then a delayed period of hyperpolarization (I2). MGC-PNs described in this study resolved pulsed pheromonal stimuli, up to about five pulses/second, with a distinct burst of action potentials for each pulse of odor. The larger the amplitude of I1, the higher the pulse rate an MGC-PN could follow, illustrating the importance of inhibitory synaptic input in shaping the temporal firing properties of these glomerular output neurons. In some MGC-PNs, triphasic responses were evoked by antennal stimulation with only one of the two key pheromone components. Again, the maximal pulse rate that an MGC-PN could follow with that pheromone component as sole stimulus was high in MGC-PNs that responded with a strong I1. These component-specific MGC-PNs innervated only one of the two principal glomeruli of the MGC, while MGC-PNs that were primarily excited by antennal stimulation with either key pheromone component had arborizations in both major MGC glomeruli. These observations therefore suggest that the population of antennal olfactory receptor cells responding to a single pheromone component is functionally heterogeneous: a subset of these sensory cells activates the excitatory drive to many uniglomerular MGC-PNs, while others feed onto inhibitory circuits that hyperpolarize the same PNs. This convergence of opposing inputs is a circuit property common to uniglomerular MGC-PNs branching in either of the major MGC glomeruli, and it enhances the ability of these glomerular output neurons to resolve intermittent olfactory input. Synaptic integration at the uniglomerular PN level thus contributes to the transmission of behaviorally important temporal information about each key pheromone component to higher centers in the brain.
通过细胞内记录和染色,我们研究了几种不同类型的投射(输出)神经元对自然间歇性性信息素刺激进行编码的能力,这些神经元支配雄性烟草天蛾触角叶中的性二态大肾小球复合体(MGC-PNs)。在许多MGC-PNs中,用两种主要性信息素成分的混合物刺激触角会引发一种特征性的三相反应,包括短暂的超极化抑制电位(I1),随后是动作电位发放的去极化,然后是延迟的超极化期(I2)。本研究中描述的MGC-PNs能够分辨脉冲性信息素刺激,频率高达约每秒五个脉冲,每个气味脉冲都有明显的动作电位爆发。I1的幅度越大,MGC-PN能够跟随的脉冲频率越高,这说明了抑制性突触输入在塑造这些肾小球输出神经元的时间发放特性中的重要性。在一些MGC-PNs中,仅用两种关键信息素成分中的一种刺激触角就会引发三相反应。同样,在以该信息素成分为唯一刺激时,MGC-PN能够跟随的最大脉冲频率在以强烈I1做出反应的MGC-PNs中较高。这些成分特异性的MGC-PNs仅支配MGC的两个主要肾小球中的一个,而主要由任何一种关键信息素成分刺激触角而兴奋的MGC-PNs在两个主要的MGC肾小球中都有分支。因此,这些观察结果表明,对单一信息素成分做出反应的触角嗅觉受体细胞群体在功能上是异质的:这些感觉细胞的一个子集激活了对许多单肾小球MGC-PNs的兴奋性驱动,而其他细胞则作用于使相同PNs超极化的抑制性回路。这种相反输入的汇聚是在两个主要MGC肾小球中任何一个分支的单肾小球MGC-PNs共有的回路特性,它增强了这些肾小球输出神经元分辨间歇性嗅觉输入的能力。因此,单肾小球PN水平的突触整合有助于将关于每个关键信息素成分行为重要的时间信息传递到大脑的更高中枢。