Rovamo J M, Kankaanpää M I, Kukkonen H
Department of Optometry and Vision Sciences, University of Wales, College of Cardiff, UK.
Vision Res. 1999 Jul;39(14):2387-98. doi: 10.1016/s0042-6989(98)00273-9.
We extended our detection model of achromatic spatial vision (Rovamo, J., Mustonen, J., & Näsänen, R. (1994a). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research, 34, 1301-1314) to colour vision by taking into account the fact that due to the spatio-chromatic opponency of retinal ganglion cells and dorsal lateral geniculate nucleus (dLGN) neurons, equiluminous chromatic gratings are not affected by precortical lateral inhibition. We then tested the extended model by using Mullen's experimental data (Mullen, K. J. (1985). The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings. Journal of Physiology, 359, 381-400). The band-pass shape of the spatial contrast sensitivity function for luminance-modulated green and yellow gratings transformed to a low-pass shape, resembling the chromatic spatial contrast sensitivity function for red-green and blue-yellow equiluminous gratings, when the effect of precortical lateral inhibition on grating contrast was computationally removed by dividing luminance contrast sensitivities by spatial frequency (i.e. by af, where a = 1 degree). After the removal of this direct effect of lateral inhibition, there still remained a residual shape difference between the spatial contrast sensitivity functions for chromatic and luminance gratings. It was due to indirect reduction of grating visibility by quantal noise high-pass filtered by precortical lateral inhibition. When this indirect effect of quantal noise was also removed, contrast sensitivity for luminance gratings was about twice the sensitivity for chromatic gratings at all spatial frequencies. This was evidently due to the fact that the chromatic contrast of the equiluminous grating at the opponent stage (Cole, G. R., Hine, T. & McIihagga, W. (1993). Detection mechanisms in L-, M-, and S-cone contrast space. Journal of the Optical Society of America A, 10, 38-51) was about half of the luminance contrast of either of its chromatic component. Thus, if the contrast of the equiluminous chromatic grating were not expressed as the Michelson contrast of one chromatic component grating against its own background (Mullen, K. J. (1985). The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings. Journal of Physiology, 359, 381-400) but as chromatic contrast at the opponent stage, contrast sensitivity would be the same for chromatic and luminance gratings.
我们将消色差空间视觉检测模型(罗瓦莫,J.,穆斯托宁,J.,& 纳萨宁,R.(1994a)。将对比度敏感度建模为视网膜照度和光栅面积的函数。《视觉研究》,34,1301 - 1314)扩展到颜色视觉,这是通过考虑到由于视网膜神经节细胞和背侧外侧膝状体核(dLGN)神经元的空间 - 颜色对立性,等亮度颜色光栅不受皮层前侧抑制的影响这一事实来实现的。然后,我们使用马伦的实验数据(马伦,K. J.(1985)。人类颜色视觉对红 - 绿和蓝 - 黄颜色光栅的对比度敏感度。《生理学杂志》,359,381 - 400)对扩展模型进行了测试。当通过将亮度对比度敏感度除以空间频率(即通过af,其中a = 1度)在计算上消除皮层前侧抑制对光栅对比度的影响时,亮度调制绿光栅和黄光栅的空间对比度敏感度函数的带通形状转变为低通形状,类似于红 - 绿和蓝 - 黄等亮度光栅的颜色空间对比度敏感度函数。在消除这种侧抑制的直接影响后,颜色光栅和亮度光栅空间对比度敏感度函数之间仍然存在残余的形状差异。这是由于皮层前侧抑制高通滤波的量子噪声对光栅可见度的间接降低所致。当这种量子噪声的间接影响也被消除后,在所有空间频率下,亮度光栅的对比度敏感度大约是颜色光栅敏感度的两倍。这显然是由于在对立阶段等亮度光栅的颜色对比度(科尔,G. R.,海因,T. & 麦克利哈加,W.(1993)。L -、M - 和 S - 锥体对比度空间中的检测机制。《美国光学学会杂志A》,10,38 - 51)大约是其任何一个颜色成分亮度对比度的一半。因此,如果等亮度颜色光栅的对比度不是表示为一个颜色成分光栅相对于其自身背景的迈克尔逊对比度(马伦,K. J.(1985)。人类颜色视觉对红 - 绿和蓝 - 黄颜色光栅的对比度敏感度。《生理学杂志》,359,381 - 400),而是表示为对立阶段的颜色对比度,那么颜色光栅和亮度光栅的对比度敏感度将是相同的。