Suppr超能文献

SNAP-25 requirement for dendritic growth of hippocampal neurons.

作者信息

Grosse G, Grosse J, Tapp R, Kuchinke J, Gorsleben M, Fetter I, Höhne-Zell B, Gratzl M, Bergmann M

机构信息

Institut für Anatomie, Universitätsklinikum Charité, Humboldt-Universität Berlin, Germany.

出版信息

J Neurosci Res. 1999 Jun 1;56(5):539-46. doi: 10.1002/(SICI)1097-4547(19990601)56:5<539::AID-JNR9>3.0.CO;2-Y.

Abstract

Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验