Matsui E, Kawasaki S, Ishida H, Ishikawa K, Kosugi Y, Kikuchi H, Kawarabayashi Y, Matsui I
National Institute of Bioscience and Human Technology, Higashi 1-1, Tsukuba, Ibaraki 305, Japan.
J Biol Chem. 1999 Jun 25;274(26):18297-309. doi: 10.1074/jbc.274.26.18297.
The flap endonuclease gene homologue from the hyperthermophilic archaeon, Pyrococcus horikoshii, was overexpressed in Escherichia coli and purified. The results of gel filtration indicated that this protein was a 41-kDa monomer. P. horikoshii flap endonuclease (phFEN) cleaves replication fork-like substrates (RF) and 5' double-strand flap structures (DF) using both flap endonuclease and 5'-3'-exonuclease activities. The mammalian flap endonuclease (mFEN) is a single-strand flap-specific endonuclease (Harrington, J. J., and Lieber, M. R. (1994) EMBO J. 13, 1235-1246), but the action patterns of phFEN appear to be quite different from those of mFEN at this point. The DF-specific flap endonuclease and 5'-exonuclease activities have not yet been reported. Therefore, this is the first report of the specific endo/exonuclease activities of phFEN. The DF-specific 5'-exonuclease activity degraded the downstream primer of 3' single-flap structure and was 15 times higher than the activities against nicked substrates without 3' flap strand. DF-specific flap endonuclease cleaved the 5' double-flap strand in DF and the lagging strand in RF at the junction portion. Because the RF appears to be the intermediate structure, due to the arrest of the replication fork, the double strand breaks after the arrests of the replication forks are probably caused by phFEN.
来自嗜热古菌火之神栖热袍菌(Pyrococcus horikoshii)的瓣内切核酸酶基因同源物在大肠杆菌中过表达并进行了纯化。凝胶过滤结果表明该蛋白是一种41 kDa的单体。火之神栖热袍菌瓣内切核酸酶(phFEN)利用瓣内切核酸酶和5'-3'-外切核酸酶活性切割复制叉样底物(RF)和5'双链瓣结构(DF)。哺乳动物瓣内切核酸酶(mFEN)是一种单链瓣特异性内切核酸酶(哈林顿,J. J.,和利伯,M. R.(1994年)《欧洲分子生物学组织杂志》13卷,1235 - 1246页),但此时phFEN的作用模式似乎与mFEN有很大不同。DF特异性瓣内切核酸酶和5'-外切核酸酶活性尚未见报道。因此,这是关于phFEN特异性内切/外切核酸酶活性的首次报道。DF特异性5'-外切核酸酶活性降解3'单瓣结构的下游引物,且比针对无3'瓣链的切口底物的活性高15倍。DF特异性瓣内切核酸酶在连接处切割DF中的5'双链瓣链和RF中的滞后链。由于RF似乎是复制叉停滞导致的中间结构,复制叉停滞后的双链断裂可能是由phFEN引起的。