Suppr超能文献

Reversible attenuation of glutamatergic transmission in hippocampal CA1 neurons of rat brain slices following transient cerebral ischemia.

作者信息

Zhang L, Zhang Y, Tian G F, Wallace M C, Eubanks J H

机构信息

Playfair Neuroscience Unit, 399 Bathurst Street, Toronto, Ontario, Canada.

出版信息

Brain Res. 1999 Jun 19;832(1-2):31-9. doi: 10.1016/s0006-8993(99)01458-4.

Abstract

The present experiments were conducted to determine the time course of synaptic dysfunction in the vulnerable regions of the post-ischemia hippocampus. Following transient cerebral ischemia, neurons in the CA1 subfield of the hippocampus undergo a delayed degeneration that develops about 48 h after reperfusion. We have shown previously that CA1 glutamatergic transmission is decreased in the CA1 subfield well before any morphological deterioration of the CA1 cells is visible under the light microscope. However, it is unknown whether a time window exists after insult in which attenuated synaptic activity may be restored to normal levels. We show here that evoked CA1 somatic population spikes and dendritic field potential responses decline progressively after reperfusion in the CA1 subfield, such that by 72 h post-insult, the challenged neurons are unable to elicit evoked excitatory responses. This attenuation of synaptic transmission was confined to the vulnerable neurons of the hippocampus, however, as the evoked responses in the dentate gyrus displayed amplitudes that were not significantly diminished from sham control after challenge. In brain slices obtained from 24 h post-ischemia rats with significantly impaired CA1 somatic responses, the application of 5 or 50 microM of the potassium channel blocker 4-aminopyridine (4-AP) restored the magnitude of the evoked excitatory response to control values. At 36 h post-ischemia, the decreased CA1 evoked responses could be partially improved by 4-AP, but not to control levels. Based upon these results, we conclude that the decreased CA1 synaptic activity at 24 h post-ischemia is potentially reversible, and suggest that 4-AP improves the CA1 synaptic responses at least in part by improving transmitter release at post-ischemia glutamatergic synapses.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验