Kruszewski M, Iwaneńko T, Bouzyk E, Szumiel I
Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
Mutat Res. 1999 May 14;434(1):53-60. doi: 10.1016/s0921-8777(99)00016-6.
We have previously found different proportions of iron and copper in nuclei of two sublines of murine lymphoma L5178Y (LY) and proposed a model of chromatin organization with these metal ions at the DNA attachment sites. We now examine the effect of chelators, desferal (DFO, iron-specific) and neocupreine (NEO, copper-specific) on DNA of LY-R and LY-S cells, using the comet and micronuclei frequency tests. There is less copper and more iron in LY-R nuclei than in LY-S nuclei. Accordingly, the effect of NEO is more marked in LY-R than in LY-S cells and in both sublines it is expressed as enhanced tail moment (measure of DNA damage in the comet assay) and increased micronuclei frequency. On the contrary, the effect of DFO on the tail moment is less pronounced in LY-R than in LY-S cells. With increasing DFO concentrations, there is a gradual decrease in the tail moment values below the control level in LY-S cells. In LY-R cells the tail moment values initially increase, then gradually decrease, eventually falling below the control level. This points to a dramatic conformational change that masks the effect of DNA discontinuities. The presence of the latter is indicated by the increase in micronuclei frequency. These results support the postulated differential role of iron and copper ions in maintaining the higher order DNA structure in LY sublines.