Suppr超能文献

腰椎小关节骨关节炎的磁共振成像和计算机断层扫描

MR imaging and CT in osteoarthritis of the lumbar facet joints.

作者信息

Weishaupt D, Zanetti M, Boos N, Hodler J

机构信息

Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Switzerland.

出版信息

Skeletal Radiol. 1999 Apr;28(4):215-9. doi: 10.1007/s002560050503.

Abstract

OBJECTIVE

To test the agreement between MR imaging and CT in the assessment of osteoarthritis of the lumbar facet joints, and thus to provide data about the need for an additional CT scan in the presence of an MR examination.

DESIGN AND PATIENTS

Using a four-point scale, two musculoskeletal radiologists independently graded the severity of osteoarthritis of 308 lumbar facet joints on axial T2-weighted and on sagittal T1- and T2-weighted turbo-spin-echo images and separately on the corresponding axial CT scans. Kappa statistics and percentage agreement were calculated.

RESULTS

The weighted kappa coefficients for MR imaging versus CT were 0.61 and 0.49 for readers 1 and 2, respectively. The weighted kappa coefficients for interobserver agreement were 0.41 for MR imaging and 0.60 for CT, respectively. There was agreement within one grade between MR and CT images in 95% of cases for reader 1, and in 97% of cases for reader 2.

CONCLUSION

With regard to osteoarthritis of the lumbar facet joints there is moderate to good agreement between MR imaging and CT. When differences of one grade are disregarded agreement is even excellent. Therefore, in the presence of an MR examination CT is not required for the assessment of facet joint degeneration.

摘要

目的

测试磁共振成像(MR)与计算机断层扫描(CT)在评估腰椎小关节骨关节炎方面的一致性,从而提供在已进行MR检查的情况下是否需要额外进行CT扫描的数据。

设计与患者

两名肌肉骨骼放射科医生使用四点量表,分别在轴向T2加权、矢状T1加权和T2加权快速自旋回波图像上以及相应的轴向CT扫描上,对308个腰椎小关节的骨关节炎严重程度进行独立分级。计算kappa统计量和百分比一致性。

结果

读者1和读者2的MR成像与CT的加权kappa系数分别为0.61和0.49。观察者间一致性的加权kappa系数,MR成像为0.41,CT为0.60。读者1在95%的病例中、读者2在97%的病例中,MR和CT图像在一个等级范围内具有一致性。

结论

对于腰椎小关节骨关节炎,MR成像和CT之间存在中度至良好的一致性。当忽略一个等级的差异时,一致性甚至极佳。因此,在已进行MR检查的情况下,评估小关节退变不需要CT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验