Suppr超能文献

荟萃分析:时机与方法

Meta-analysis: when and how.

作者信息

Imperiale T F

机构信息

Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.

出版信息

Hepatology. 1999 Jun;29(6 Suppl):26S-31S.

Abstract

Systematic reviews have a central role in evidence-based medicine. The quantitative systematic review, also known as meta-analysis, provides a logical structure for quantifying evidence and for exploring bias and diversity in research systematically. It is essential that clinicians, educators, and researchers understand the methods that comprise this research tool, particularly the basic step-by-step process, and know when numerical pooling of data is appropriate. The essay describes how systematic reviews are best conducted and when statistical pooling of data is appropriate. Systematic reviews are scientific investigations with planned methods that use original studies as subjects and synthesize the results of multiple studies using strategies to limit bias and random error. This process requires judgments to be made explicit, and should be question driven, protocol based, reproducible, and comprehensive in scope. Meta-analysis provides a framework for research synthesis, increases power and precision, provides an overall estimate and range of effect, and identifies greater-than-expected variability among study results (heterogeneity). Meta-analysis does not remove subjectivity from the process of synthesis, identify sources of variability among studies, or obviate the need for sound, compassionate clinical reasoning. Statistical heterogeneity should be anticipated and welcomed. It forces a consideration of clinical heterogeneity as well as variation in study protocol and quality. Statistical tests for homogeneity are insensitive and do not indicate sources of heterogeneity, making such consideration imperative. The most common and popular measures of efficacy for a meta-analysis are the standardized difference between two means, the relative risk, and the odds ratio. An additional measure, the number needed to treat, with its 95% confidence interval is the most clinically useful measure of the effects of an intervention and is useful for comparing the relative effectiveness of different interventions for the same condition. Important parts of meta-analysis and sensitivity and subgroup analyses are best considered a priori and should be used to explore heterogeneity and to test for publication bias and variation in study quality.

摘要

系统评价在循证医学中起着核心作用。定量系统评价,也称为荟萃分析,为量化证据以及系统地探索研究中的偏倚和多样性提供了一种逻辑结构。临床医生、教育工作者和研究人员必须了解构成这一研究工具的方法,尤其是基本的逐步流程,并知道何时适合对数据进行数值合并。本文描述了如何最好地进行系统评价以及何时适合对数据进行统计合并。系统评价是采用计划方法的科学调查,以原始研究为对象,并使用限制偏倚和随机误差的策略综合多项研究的结果。这个过程需要使判断明确化,应该以问题为驱动、基于方案、可重复且范围全面。荟萃分析为研究综合提供了一个框架,增强了检验效能和精度,提供了总体估计和效应范围,并识别出研究结果之间大于预期的变异性(异质性)。荟萃分析并不能消除综合过程中的主观性,不能识别研究之间变异性的来源,也不能消除合理、富有同情心的临床推理的必要性。应该预期并欢迎统计异质性。它促使人们考虑临床异质性以及研究方案和质量的差异。同质性的统计检验不敏感,也不能指出异质性的来源,因此这种考虑至关重要。荟萃分析中最常用和最受欢迎的疗效衡量指标是两个均值之间的标准化差异、相对风险和比值比。另一个指标,即治疗所需人数及其95%置信区间,是干预效果最具临床实用性的衡量指标,对于比较针对同一病症的不同干预措施的相对有效性很有用。荟萃分析以及敏感性和亚组分析的重要部分最好在进行分析前就加以考虑,应用于探索异质性以及检验发表偏倚和研究质量的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验