Ibarra-Molero B, Loladze V V, Makhatadze G I, Sanchez-Ruiz J M
Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Spain.
Biochemistry. 1999 Jun 22;38(25):8138-49. doi: 10.1021/bi9905819.
We have characterized the guanidine-induced unfolding of both yeast and bovine ubiquitin at 25 degrees C and in the acidic pH range on the basis of fluorescence and circular dichroism measurements. Unfolding Gibbs energy changes calculated by linear extrapolation from high guanidine unfolding data are found to depend very weakly on pH. A simple explanation for this result involves the two following assumptions: (1) charged atoms of ionizable groups are exposed to the solvent in native ubiquitin (as supported by accessible surface area calculations), and Gibbs energy contributions associated with charge desolvation upon folding (a source of pK shifts) are small; (2) charge-charge interactions (another source of pK shifts upon folding) are screened out in concentrated guanidinium chloride solutions. We have also characterized the thermal unfolding of both proteins using differential scanning calorimetry. Unfolding Gibbs energy changes calculated from the calorimetric data do depend strongly on pH, a result that we attribute to the pH dependence of charge-charge interactions (not eliminated in the absence of guanidine). In fact, we find good agreement between the difference between the two series of experimental unfolding Gibbs energy changes (determined from high guanidine unfolding data by linear extrapolation and from thermal denaturation data in the absence of guanidine) and the theoretical estimates of the contribution from charge-charge interactions to the Gibbs energy change for ubiquitin unfolding obtained by using the solvent-accessibility-corrected Tanford-Kirkwood model, together with the Bashford-Karplus (reduced-set-of-sites) approximation. This contribution is found to be stabilizing at neutral pH, because most charged groups on the native protein interact mainly with groups of the opposite charge, a fact that, together with the absence of large charge-desolvation contributions, may explain the high stability of ubiquitin at neutral pH. In general, our analysis suggests the possibility of enhancing protein thermal stability by adequately redesigning the distribution of solvent-exposed, charged residues on the native protein surface.
我们基于荧光和圆二色性测量,对25摄氏度及酸性pH范围内胍诱导的酵母和牛泛素的去折叠过程进行了表征。通过从高胍浓度去折叠数据进行线性外推计算得到的去折叠吉布斯自由能变化,发现其对pH的依赖性非常弱。对此结果的一个简单解释涉及以下两个假设:(1)可电离基团的带电原子在天然泛素中暴露于溶剂中(可及表面积计算支持这一点),并且折叠时与电荷去溶剂化相关的吉布斯自由能贡献(pK位移的一个来源)很小;(2)电荷 - 电荷相互作用(折叠时pK位移的另一个来源)在浓氯化胍溶液中被屏蔽。我们还使用差示扫描量热法对两种蛋白质的热去折叠进行了表征。从量热数据计算得到的去折叠吉布斯自由能变化确实强烈依赖于pH,我们将此结果归因于电荷 - 电荷相互作用对pH的依赖性(在没有胍的情况下不会消除)。事实上,我们发现两组实验去折叠吉布斯自由能变化之间的差异(通过线性外推从高胍浓度去折叠数据确定以及在没有胍的情况下从热变性数据确定)与使用溶剂可及性校正的Tanford - Kirkwood模型以及Bashford - Karplus(简化位点集)近似得到的电荷 - 电荷相互作用对泛素去折叠吉布斯自由能变化贡献的理论估计之间有很好的一致性。发现在中性pH下这种贡献是稳定的,因为天然蛋白质上的大多数带电基团主要与相反电荷的基团相互作用,这一事实连同没有大的电荷去溶剂化贡献,可能解释了泛素在中性pH下的高稳定性。一般来说,我们的分析表明通过适当重新设计天然蛋白质表面溶剂暴露的带电残基的分布来提高蛋白质热稳定性的可能性。