Golla Hemashree, Kannan Adithi, Gopi Soundhararajan, Murugan Sowmiya, Perumalsamy Lakshmi R, Naganathan Athi N
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
ACS Cent Sci. 2022 Feb 23;8(2):282-293. doi: 10.1021/acscentsci.1c01548. Epub 2022 Jan 27.
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
蛋白质的功能与其天然构象集合中的波动密切相关。决定波动幅度进而决定潜在能量景观形状(而潜在能量景观形状又决定功能输出大小)的结构 - 能量特征,常常被多个变量所混淆。在此,我们采用人源p190A RhoGAP蛋白的FF1结构域作为模型系统,以揭示一个埋藏酪氨酸磷酸化的分子基础,该酪氨酸对于与转录因子TFII - I相关的转录活性至关重要。结合光谱学、量热法、统计力学建模、分子模拟和磷酸化分析,我们表明FF1结构域在其天然构象集合中采样了多种不同的构象,其中一些构象具有磷酸化能力。通过单个电荷反转(K53E)或电荷中和(K53Q)突变消除不利的电荷 - 电荷相互作用后,由于结构耦合改变、平衡波动衰减以及天然构象集合更加紧凑,我们观察到磷酸化程度相应降低。因此,我们建立了一种FF1结构域中磷酸化的构象选择机制,其中K53充当“守门人”,调节埋藏酪氨酸的溶剂暴露。我们的工作证明了不利的电荷 - 电荷相互作用在通过调节天然构象集合特征来控制功能事件中的作用,这一特征可能在有序蛋白质结构域中普遍存在。