Kulkarni V S, Boggs J M, Brown R E
The Hormel Institute, University of Minnesota, Austin, Minnesota 55912 USA.
Biophys J. 1999 Jul;77(1):319-30. doi: 10.1016/S0006-3495(99)76892-X.
Galactosylceramides (GalCers) containing nervonoyl (24:1(Delta15(cis))) acyl chains have the capacity to assemble into nanotubular microstructures in excess water (. Biophys. J. 69:1976-1986). To define the structural parameters that modulate nanotube formation, GalCer derivatives were synthesized that contained cis monounsaturated acyl chains with the formula X:1((X-9)). X indicates the total acyl carbon number (24, 22, 20, or 18), and 1 indicates a single cis double bond, the location of which is designated by the superscript (X-9). Deep etching of freeze-fractured 24:1(Delta15(cis)) GalCer dispersions followed by replica production and transmission electron microscopic analysis confirmed nanotube morphology (25-30-nm diameter). Control experiments revealed that tubule formation was promoted by cooling through the main enthalpic phase transition coupled with repetitive freeze-thaw cycling. Imparting a negative charge to the sugar headgroup of 24:1(Delta15)GalCer via sulfate dramatically altered mesomorpholgy and resulted in myelinic-like, multilamellar structures. Removal of the sugar headgroup (24:1(Delta15)Cer) resulted in flattened cylindrical structures with a cochleate appearance. Compared to these large-scale changes in morphology, more subtle changes were induced by structural changes in the acyl chain of 24:1(Delta15)GalCer. 22:1(Delta13)GalCer dispersions consisted of long, smooth tubules (35-40-nm diameters) with a strong tendency to self-align into bundle-like aggregates. In contrast, the microstructures formed by 20:1(Delta11)GalCer resembled helical ribbons with a right-handed twist. Ribbon widths averaged 30-35 nm, with helical pitches of 80-90 nm. 18:1(Delta9)GalCer displayed a variety of morphologies, including large-diameter multilamellar cylinders and liposome-like structures, as well as stacked, plate-like arrays. The results are discussed within the context of current theories of lipid tubule formation.
含有神经壬酰基(24:1(Δ15(cis)))酰基链的半乳糖神经酰胺(GalCers)在过量水中能够组装成纳米管状微结构(《生物物理杂志》69:1976 - 1986)。为了确定调节纳米管形成的结构参数,合成了含有通式为X:1((X - 9))的顺式单不饱和酰基链的半乳糖神经酰胺衍生物。X表示酰基总碳原子数(24、22、20或18),1表示一个顺式双键,其位置由上标(X - 9)指定。对冷冻断裂的24:1(Δ15(cis))半乳糖神经酰胺分散体进行深度蚀刻,随后制作复制品并进行透射电子显微镜分析,证实了纳米管形态(直径25 - 30纳米)。对照实验表明,通过主要焓相变冷却并结合反复冻融循环可促进微管形成。通过硫酸根给24:1(Δ15)半乳糖神经酰胺的糖头基赋予负电荷,显著改变了介晶形态,导致形成髓鞘样的多层结构。去除糖头基(24:1(Δ15)神经酰胺)会产生具有螺旋状外观的扁平圆柱结构。与这些大规模的形态变化相比,24:1(Δ15)半乳糖神经酰胺酰基链的结构变化引起了更细微的变化。22:1(Δ13)半乳糖神经酰胺分散体由长而光滑的微管(直径35 - 40纳米)组成,有强烈的自我排列成束状聚集体的倾向。相比之下,20:1(Δ11)半乳糖神经酰胺形成的微结构类似于具有右手螺旋的螺旋带。带宽度平均为30 - 35纳米,螺旋间距为80 - 90纳米。18:1(Δ9)半乳糖神经酰胺呈现出多种形态,包括大直径的多层圆柱体和脂质体样结构,以及堆叠的板状阵列。将在当前脂质微管形成理论的背景下讨论这些结果。