Schneider C, Sühnel J
Biocomputing, Institut für Molekulare Biotechnologie, Postfach 100813, D-07743 Jena, Germany.
Biopolymers. 1999 Sep;50(3):287-302. doi: 10.1002/(SICI)1097-0282(199909)50:3<287::AID-BIP5>3.0.CO;2-G.
We report on an unrestrained molecular dynamics simulation of the flavin mononucleotide (FMN)-RNA aptamer. The simulated average structure maintains both cross-strand and intermolecular FMN-RNA nuclear Overhauser effects from the nmr experiments and has all qualitative features of the nmr structure including the G10-U12-A25 base triple and the A13-G24, A8-G28, and G9-G27 mismatches. However, the relative orientation of the hairpin loop to the remaining part of the molecule differs from the nmr structure. The simulation predicts that the flexible phosphoglycerol part of FMN moves toward G27 and forms hydrogen bonds. There are structurally long-lived water molecules in the FMN binding pocket forming hydrogen bonds within FMN and between FMN and RNA. In addition, long-lived water is found bridging primarily RNA backbone atoms. A general feature of the environment of long-lived "structural" water is at least two and in most cases three or four potential acceptor atoms. The 2'-OH group of RNA usually acts as an acceptor in interactions with the solvent. There are almost no intrastrand O2'H(n) vertical ...O4'(n + 1) hydrogen bonds within the RNA backbone. In the standard case the preferred orientation of the 2'-OH hydrogen atoms is approximately toward O3' of the same nucleotide. However, a relatively large number of conformations with the backbone torsional angle gamma in the trans orientation is found. A survey of all experimental RNA x-ray structures shows that this backbone conformation occurs but is less frequent than found in the simulation. Experimental nmr RNA aptamer structures have a higher fraction of this conformation as compared to the x-ray structures. The backbone conformation of nucleotide n + 1 with the torsional angle gamma in the trans orientation leads to a relatively short distance between 2'-OH(n) and O5'(n + 1), enabling hydrogen-bond formation. In this case the preferred orientation of the 2'-OH hydrogen atom is approximately toward O5'(n + 1). We find two relatively short and dynamically stable types of backbone-backbone next-neighbor contacts, namely C2'(H)(n) vertical ...O4'(n + 1) and C5'(H)(n + 1) vertical ...O2'(n). These interactions may affect both backbone rigidity and thermodynamic stability of RNA helical structures.
我们报道了黄素单核苷酸(FMN)-RNA适配体的无约束分子动力学模拟。模拟得到的平均结构保留了核磁共振实验中的跨链和分子间FMN-RNA核Overhauser效应,并且具有核磁共振结构的所有定性特征,包括G10-U12-A25碱基三联体以及A13-G24、A8-G28和G9-G27错配。然而,发夹环与分子其余部分的相对取向与核磁共振结构不同。模拟预测FMN的柔性磷酸甘油部分向G27移动并形成氢键。在FMN结合口袋中存在结构上寿命较长的水分子,它们在FMN内部以及FMN与RNA之间形成氢键。此外,发现寿命较长的水主要桥接RNA主链原子。寿命较长的“结构”水的环境的一个普遍特征是至少有两个潜在受体原子,在大多数情况下是三个或四个。RNA的2'-OH基团在与溶剂相互作用时通常充当受体。RNA主链内几乎不存在链内O2'H(n)垂直...O4'(n + 1)氢键。在标准情况下,2'-OH氢原子的优选取向大致朝向同一核苷酸的O3'。然而,发现了相对大量的主链扭转角γ处于反式取向的构象。对所有实验性RNA X射线结构的调查表明,这种主链构象存在,但比模拟中发现的频率低。与X射线结构相比,实验性核磁共振RNA适配体结构中这种构象的比例更高。扭转角γ处于反式取向的核苷酸n + 1的主链构象导致2'-OH(n)与O5'(n + 1)之间的距离相对较短,从而能够形成氢键。在这种情况下,2'-OH氢原子的优选取向大致朝向O5'(n + 1)。我们发现了两种相对较短且动态稳定的主链-主链相邻接触类型,即C2'(H)(n)垂直...O4'(n + 1)和C5'(H)(n + 1)垂直...O2'(n)。这些相互作用可能会影响RNA螺旋结构的主链刚性和热力学稳定性。