Broët P, Moreau T, Lellouch J, Asselain B
INSERM U472, 16 Ave. Paul Vaillant-Couturier, 94807 Villejuif Cedex, France.
Stat Med. 1999 Jul 30;18(14):1791-800; discussion 1801. doi: 10.1002/(sici)1097-0258(19990730)18:14<1791::aid-sim215>3.0.co;2-w.
In analysing a clinical trial with the logrank test, the hazards between the two groups are usually assumed to be proportional. Nevertheless, this hypothesis is no longer valid with unobserved covariates. As a consequence, there is a loss of power of the logrank test for testing the null hypothesis H(0) of no treatment effect. We propose a test suited for taking into account unobserved covariates. The proposed approach is based on a proportional hazard frailty model whereby the omitted covariates are considered as an unobserved frailty variable. The procedure is as follows. In a first step, the weighted logrank test optimal for testing H(0) against a general proportional hazard frailty model is obtained and its specialization for a gamma frailty variable is derived. In a second step, the proposed test is obtained by combining the maximin efficiency robustness principle and the gamma frailty distribution properties. Simulation studies investigate the power properties of the test for different frailty distributions. A breast cancer clinical trial is analysed as an example. The proposed test might be recommended rather than the logrank for practical situations in which one expects heterogeneity related to omitted covariates.
在使用对数秩检验分析一项临床试验时,通常假定两组之间的风险是成比例的。然而,对于未观察到的协变量,这一假设不再成立。因此,用于检验无治疗效果的原假设H(0)的对数秩检验的功效会有所损失。我们提出了一种适合考虑未观察到的协变量的检验方法。所提出的方法基于比例风险脆弱模型,其中被遗漏的协变量被视为一个未观察到的脆弱变量。步骤如下。第一步,获得针对一般比例风险脆弱模型检验H(0)的最优加权对数秩检验,并推导其针对伽马脆弱变量的特殊形式。第二步,通过结合极大极小效率稳健性原则和伽马脆弱分布特性得到所提出的检验。模拟研究考察了针对不同脆弱分布该检验的功效特性。作为一个例子,分析了一项乳腺癌临床试验。对于预期存在与被遗漏协变量相关的异质性的实际情况,可能推荐使用所提出的检验而非对数秩检验。