Suppr超能文献

长QT综合征——分子机制的现状

The LQT syndromes--current status of molecular mechanisms.

作者信息

Schulze-Bahr E, Wedekind H, Haverkamp W, Borggrefe M, Assmann G, Breithardt G, Funke H

机构信息

Department of Cardiology and Angiology, University Hospital Münster.

出版信息

Z Kardiol. 1999 Apr;88(4):245-54. doi: 10.1007/s003920050283.

Abstract

Our knowledge on the molecular genetics of inherited cardiac arrhythmias is very recent in comparison to the advances of genetics achieved in other inherited cardiac disorders. This is related to the high mortality and early disease onset of these arrhythmias resulting in mostly small nucleus families. Thus, traditional genetic linkage studies that are based on the genetic information obtained from large multi-generation families were made difficult. In 1991, the first chromosomal locus for congenital long-QT (LQT) syndrome was identified on chromosome 11p15.5 (LQT1 locus) by linkage analysis. Meanwhile, the disease-causing gene at the LQT1 locus (KCNQ1), a gene encoding a K+ channel subunit of the IKs channel, and three other, major genes, all encoding cardiac ion channel components, have been identified. Taken together, LQT syndrome turned out to be a heterogeneous channelopathy. Moreover, the power of linkage studies to reveal the genetic causes of the LQT syndrome was also important to identify unknown but fundamental channel components that contribute to the ion currents tuning ventricular repolarization. In-vitro expression of the altered ion channel genes demonstrated in each case that the altered ion channel function produces prolongation of the action potential and thus the increasing propensity to ventricular tachyarrhythmias. Since these ion channels are pharmacological targets of many antiarrhythmic (and other) drugs, individual and potentially deleterious drug responses may be related to genetic variation in ion channel genes. Very recently, also in acquired LQT syndrome, which is a frequent clinical disorder in cardiology a genetic basis has been proposed in part since mutations in LQT genes have been specifically found. The discovery of ion channel defects in LQT syndrome represents the major achievement in our understanding and implies potential therapeutic options. The knowledge of the genomic structure of the LQT genes now offers the possibility to detect the underlying genetic defect in 80-90% of all patients. With this specific information, containing the type of ion channel (Na+ versus K+ channel) and electrophysiological alteration by the mutation (loss-of-function versus change-of-function mutation), gene-directed, elective drug therapies have been initiated in genotyped LQT patients. Based on preliminary data, that were supported by in vitro studies, this approach may be useful in recompensating the characteristic phenotypes in some LQT patients. Mutation detection is a new diagnostic tool which may become of more increasing importance in patients with a normal QTc or just a borderline prolongation of the QTc interval at presentation. These patients represent approximately 40% of all familial cases. Moreover, LQT3 syndrome and idiopathic ventricular fibrillation are allelic disorders and genetically overlap. In both mutations in the LQT3 gene SCN5A encoding the Na+ channel alpha-subunit for INa have been reported. Thus, the clinical nosology of inherited arrhythmias may be reconsidered after elucidation of the underlying molecular bases. Meanwhile, genotype-phenotype correlations in large families are on the way to evaluate intergene, interfamilial, and intrafamilial differences in the clinical phenotype reflecting gene specific, gene-site specific, and individual consequences of a given mutation. LQT syndrome is phenotypically heterogeneous due to the reduced penetrance and variable expressivity associated with the mutations. This paper discusses the current data on molecular genetics and genotype-phenotype correlations and the implications for diagnosis and treatment.

摘要

与其他遗传性心脏疾病在遗传学方面取得的进展相比,我们对遗传性心律失常分子遗传学的了解尚属新近之事。这与这些心律失常的高死亡率和疾病早期发作有关,导致大多为小核心家庭。因此,基于从大型多代家庭获得的遗传信息进行的传统遗传连锁研究变得困难。1991年,通过连锁分析在11号染色体p15.5上确定了先天性长QT(LQT)综合征的第一个染色体位点(LQT1位点)。与此同时,已确定LQT1位点的致病基因(KCNQ1),一个编码IKs通道K+通道亚基的基因,以及其他三个主要基因,均编码心脏离子通道成分。综上所述,LQT综合征原来是一种异质性通道病。此外,连锁研究揭示LQT综合征遗传原因的能力对于识别有助于调节心室复极离子电流的未知但基本的通道成分也很重要。在每种情况下,改变的离子通道基因的体外表达都证明,改变的离子通道功能会导致动作电位延长,从而增加室性快速心律失常的倾向。由于这些离子通道是许多抗心律失常(及其他)药物的药理学靶点,个体及潜在有害的药物反应可能与离子通道基因的遗传变异有关。最近,在获得性LQT综合征中也提出了遗传基础,这是心脏病学中一种常见的临床病症,部分原因是在LQT基因中特别发现了突变。LQT综合征中离子通道缺陷的发现是我们理解方面的主要成就,并暗示了潜在的治疗选择。现在,LQT基因的基因组结构知识使我们有可能在80%至90%的所有患者中检测到潜在的遗传缺陷。有了这些包含离子通道类型(Na+通道与K+通道)以及突变引起的电生理改变(功能丧失与功能改变突变)的特定信息,已在基因分型的LQT患者中启动了基因导向的选择性药物治疗。基于体外研究支持的初步数据,这种方法可能有助于补偿一些LQT患者的特征性表型。突变检测是一种新的诊断工具,对于QTc正常或就诊时QTc间期仅临界延长的患者可能变得越来越重要。这些患者约占所有家族性病例的40%。此外,LQT3综合征和特发性心室颤动是等位基因疾病且在遗传上重叠。在这两种疾病中,均已报道LQT3基因SCN5A(编码INa的Na+通道α亚基)发生突变。因此,在阐明潜在分子基础后,可能需要重新考虑遗传性心律失常的临床分类学。与此同时,大型家族中的基因型-表型相关性正在评估反映给定突变的基因特异性、基因位点特异性和个体后果的临床表型中的基因间、家族间和家族内差异。由于与突变相关的外显率降低和表达可变,LQT综合征在表型上是异质的。本文讨论了分子遗传学和基因型-表型相关性的当前数据以及对诊断和治疗的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验