Green S, Bülow J, Saltin B
Copenhagen Muscle Research Centre, Rigshospitalet, DK-2200 Copenhagen, Denmark.
J Appl Physiol (1985). 1999 Jul;87(1):460-4. doi: 10.1152/jappl.1999.87.1.460.
The purpose of this study was to examine whether microdialysis and the internal reference thallium-201 ((201)Tl) could accurately measure muscle interstitial K+ (Ki+) before, during, and after exercise. The relative loss of (201)Tl and simultaneous relative recovery of K+ were measured in vitro for 12 microdialysis probes that were bathed in Ringer acetate medium and perfused at various flows (3-10 microl/min). (201)Tl loss was linearly related to K+ recovery, and their level of agreement was not different from zero. Microdialysis and (201)Tl were then used to measure Ki+ in the gastrocnemius medialis muscle of four humans during rest and static plantar flexion exercise. At rest, Ki+ was 3.9-4.3 mmol/l when the perfusate flow was 2 or 5 microl/min. During exercise, Ki+ increased from 6.9 +/- 0.4 to 7.5 +/- 0.3 mmol/l at low to high intensity and declined to 5.2 +/- 0.3 mmol/l after exercise. These results suggest that large changes in Ki+ in human skeletal muscle can be accurately measured by using microdialysis and (201)Tl.