Suppr超能文献

An endogenous activator of renal glutamic acid decarboxylase effects of adenosine triphosphate, phosphate and chloride on the activity of this enzyme.

作者信息

Turský T, Bandzuchová E

机构信息

Department of Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovak Republic.

出版信息

Eur J Biochem. 1999 Jun;262(3):696-703. doi: 10.1046/j.1432-1327.1999.00413.x.

Abstract

The renal glutamic acid decarboxylase (GAD) differs from the brain and pancreatic enzyme by its strong binding to membranes that is not influenced by detergents. After centrifugation of freshly prepared homogenate of the rat renal cortex, only 10-15% of GAD activity was found in supernatants and 15-30% in pellets. The majority of the GAD activity was lost. The bound GAD was found in the pellet. A thermolabile activator was present in the supernatant, which was not lost on dialysis. Approximately 55% of the total GAD activity was solubilized in homogenates stored for 24 h at 4 degrees C without detergent, whereas in homogenates stored with Triton X-100, the solubilized GAD increased to 80%. This solubilization was decreased by inhibitors of thioproteases such as leupeptin, antipain and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64). Solubilized GAD was applied to DEAE Toyopearl resin and the GAD activator was eluted with 35 mM Pi. GAD was eluted with 250 mM Pi. The effect of ATP on the activity of renal GAD was also different to its effect on brain GAD. ATP is a strong inhibitor of the brain enzyme at physiological concentrations. ATP (and Pi), together with chlorides (another brain GAD inhibitor), stabilize the renal GAD. However, renal GAD was inhibited by ATP in the presence of leupeptin in freshly prepared homogenates. Similarly, ATP inhibits solubilized GAD from homogenates stored without Triton X-100 for 24 h at 4 degrees C, but Pi retains its stabilizing effect in this preparation. A significant finding of the work presented here is the obligatory requirement of an endogenous activator for renal GAD activity. Whether this activator is an enzyme converting the inactive GAD to active enzyme (as hypothesized for brain GAD), or whether it is a protein affecting the activity of renal GAD by binding (as observed for GAD in some plants) remains to be established.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验