Suppr超能文献

GABA induces norepinephrine exocytosis from hippocampal noradrenergic axon terminals by a dual mechanism involving different voltage-sensitive calcium channels.

作者信息

Fassio A, Rossi F, Bonanno G, Raiteri M

机构信息

Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.

出版信息

J Neurosci Res. 1999 Aug 1;57(3):324-31.

Abstract

GABA can evoke norepinephrine (NE) release by activating GABAA receptors or GABA transporters on noradrenergic terminals. The heterocarrier-induced release occurs by conventional exocytosis. We here characterized the mechanism of the GABAA receptor-induced release and investigated what type(s) of voltage-sensitive Ca2+ channels (VSCCs) are involved in the GABA heterocarrier and GABA(A) receptor-evoked release. The effect of GABA in superfused rat hippocampal synaptosomes prelabeled with [(3)H]-NE was partially prevented by bicuculline or the GABA uptake inhibitor SKF 89976A and abolished by blocking both GABAA receptors and GABA transporters. The release elicited through GABAA receptors was Ca2+-dependent, prevented by Cd2+ or by botulinum toxin C, and modulated through alpha2 autoreceptors. The GABAA receptor-evoked release was insensitive to nifedipine and to omega-conotoxin MVIIC, but was inhibited ( approximately 50%) by omega-conotoxin GVIA. The heterocarrier-evoked release, nifedipine-insensitive, was inhibited approximately 30% either by omega-conotoxin GVIA or by omega-conotoxin MVIIC; the combined toxins produced approximately 60% inhibition. To conclude: a) the releases of NE evoked by activation of GABA(A) receptors and GABA heterocarriers are additive, although they both occur by conventional exocytosis; b) the heterocarrier-induced release requires activation of N and P/Q type channels, whereas the GABAA receptor-induced release only involves channels of the N type.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验