Suppr超能文献

Nitric oxide prevents myoglobin/tert-butyl hydroperoxide-induced inhibition of Ca2+ transport in skeletal and cardiac sarcoplasmic reticulum.

作者信息

Menshikova E V, Ritov V B, Gorbunov N V, Salama G, Claycamp H G, Kagan V E

机构信息

Department of Cell Biology, University of Pittsburgh, Pennsylvania 15238, USA.

出版信息

Ann N Y Acad Sci. 1999 Jun 30;874:371-85. doi: 10.1111/j.1749-6632.1999.tb09252.x.

Abstract

Interaction of hydrogen peroxide or organic hydroperoxides with hemoproteins is known to produce oxoferryl hemoprotein species that act as very potent oxidants. Since skeletal and cardiac muscle cells contain high concentrations of myoglobin this reaction may be an important mechanism of initiation or enhancement of oxidative stress, which may impair their Ca2+ transport systems. Using skeletal and cardiac sarcoplasmic reticulum (SR) vesicles, we demonstrated by EPR the formation of alkoxyl radicals and protein-centered peroxyl radicals in the presence of myoglobin (Mb) and tert-butyl hydroperoxide (t-BuOOH). The low temperature EPR signal of the radicals was characterized by major feature at g = 2.016 and a shoulder at g = 2.036. In the presence of SR vesicles, the magnitude of the protein-centered peroxyl radical signal decreased, suggesting that the radicals were involved in oxidative modification of SR membranes. This was accompanied by SR membrane oxidative damage, as evidenced by accumulation of 2-thiobarbituric acid-reactive substances (TBARS) and the inhibition of Ca2+ transport. We have shown that nitric oxide (NO), reacting with redox-active heme iron, can prevent peroxyl radical formation activated by Mb/t-BuOOH. Incubation of SR membranes with an NO donor, PAPA/NO (a non-thiol compound that releases NO) at 200-500 microM completely prevented the t-BuOOH-dependent production of peroxyl radicals and formation of TBARS, and thus protected against oxidative inhibition of Ca2+ transport.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验