Suppr超能文献

GTP水解对哺乳动物无细胞系统中糖基磷脂酰肌醇生物合成的刺激作用:膜融合参与的证据。

Stimulation of glycosylphosphatidylinositol biosynthesis in mammalian cell-free systems by GTP hydrolysis: evidence for the involvement of membrane fusion.

作者信息

Stevens V L, Zhang H, Kristyanne E S

机构信息

Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine Atlanta, Loughlin Radiation Oncology Center, 145 Edgewood Avenue, S.E., Atlanta, GA 30335, USA.

出版信息

Biochem J. 1999 Aug 1;341 ( Pt 3)(Pt 3):577-84.

Abstract

The second step in glycosylphosphatidylinositol (GPI) biosynthesis, the deacetylation of GlcNAc-phosphatidylinositol (GlcNAc-PI), has been shown to be stimulated by GTP hydrolysis [Stevens (1993) J. Biol. Chem. 268, 9718-9724]. We have now developed a system to study this regulation that uses microsomes from cells defective in the first step in GPI biosynthesis (class A, C and H lymphoma mutants) and the second reaction in the pathway (G9PLAP.85). With this mixed-microsome system, the deacetylation of GlcNAc-PI was almost completely dependent on GTP hydrolysis. Because GlcNAc-PI synthesized by the G9PLAP.85 microsomes cannot readily move to the first-step-mutant microsomes to be deacetylated, this result indicated that the role of GTP was to facilitate the 'apparent' transfer of this substrate between membrane vesicles. The microsomes could be stably preactivated by pretreatment with GTP before GPI biosynthesis was initiated, indicating that fusion was the most likely mechanism for this regulation. GlcNAc-PI deacetylation could also be stably preactivated in EL4 microsomes, suggesting that fusion also occurred in wild-type membranes. Some differential localization of the GlcNAc-PI synthetic and deacetylation activities with the endoplasmic reticulum was found. Therefore fusion seems to stimulate GPI biosynthesis in mammalian microsomes by bringing together the first two enzymes in the pathway in the same membrane vesicle.

摘要

糖基磷脂酰肌醇(GPI)生物合成的第二步,即N-乙酰葡糖胺磷脂酰肌醇(GlcNAc-PI)的脱乙酰化反应,已被证明受GTP水解的刺激作用[史蒂文斯(1993年)《生物化学杂志》268卷,9718 - 9724页]。我们现已开发出一种系统来研究这种调控作用,该系统使用来自GPI生物合成第一步存在缺陷的细胞(A类、C类和H类淋巴瘤突变体)以及该途径中第二个反应(G9PLAP.85)的微粒体。利用这种混合微粒体系统,GlcNAc-PI的脱乙酰化反应几乎完全依赖于GTP水解。由于由G9PLAP.85微粒体合成的GlcNAc-PI不易转移到第一步突变体微粒体中进行脱乙酰化,这一结果表明GTP的作用是促进该底物在膜泡之间的“表观”转移。在启动GPI生物合成之前,通过用GTP进行预处理可使微粒体稳定地预激活,这表明融合是这种调控作用最可能的机制。在EL4微粒体中,GlcNAc-PI脱乙酰化反应也能被稳定地预激活,这表明融合在野生型膜中也会发生。研究发现GlcNAc-PI合成和脱乙酰化活性在内质网存在一些差异定位。因此,融合似乎通过将该途径中的前两种酶聚集在同一膜泡中,从而刺激哺乳动物微粒体中的GPI生物合成。

相似文献

本文引用的文献

5
A Rab GTPase is required for homotypic assembly of the endoplasmic reticulum.
J Biol Chem. 1997 May 23;272(21):13479-83. doi: 10.1074/jbc.272.21.13479.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验