Suppr超能文献

[Membrane-bound carbonic anhydrase (CA IV) in human corneal epithelium and endothelium].

作者信息

Wolfensberger T J, Mahieu I, Carter N D, Hollande E, Böhnke M

机构信息

Hôpital Ophtalmique Jules Gonin, Université de Lausanne.

出版信息

Klin Monbl Augenheilkd. 1999 May;214(5):263-5. doi: 10.1055/s-2008-1034787.

Abstract

PURPOSE

Active HCO3- transport through the corneal endothelial cell layer causes a dehydration of the corneal stroma and is thought to be driven by Na/K- and HCO3(-)-dependent ATPase as well as an electro-genic Na/HCO3- cotransport. Transmembrane bicarbonate transport has also been associated with the recently characterised membrane-anchored isoform of carbonic anhydrase (CA IV) in various tissues. We investigated the localisation of CA IV in human fresh and cultured epi- and endothelium at the light- (LM) and electron-microscopic (EM) level.

METHODS

Postmortem corneas were obtained within 12 hours of death, stored in formaldehyde and sectioned in paraffin. LM immunohisto-chemistry was performed using the purified gamma-globulin fraction of a polyclonal chicken antibody against CA IV isolated from human kidneys. Epi- and endothelial cell cultures were grown in uncoated flasks under standard conditions and processed both for LM and EM immunohistochemistry using the same antibody.

RESULTS

Lightmicroscopy of fresh tissue showed membrane staining for CA IV in the whole circumference of the endothelium. Little staining was also observed in some cells of the basal cell layer of the epithelium. Immunohistochemical staining at the EM level was confined to the cell surface of confluent cultures of both epi- and endothelial cells.

CONCLUSION

The localisation of CA IV to the cell surface of fresh and cultured corneal endothelium suggests the presence of a membrane-bound ion exchange mechanism which may be important for HCO3- transport and corneal hydration. Compromising this mechanism by treatment with local carbonicanhydrase inhibitors may be of clinical importance in selected endothelial disease.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验