Mavridis M, Besson M J
Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS URA 1488, Université Pierre et Marie Curie, Paris, France.
Neuroscience. 1999;92(3):945-66. doi: 10.1016/s0306-4522(99)00043-3.
Neostriatal GABAergic neurons projecting to the globus pallidus synthesize the opioid peptide enkephalin, while those innervating the substantia nigra pars reticulata and the entopeduncular nucleus synthesize dynorphin. The differential control exerted by dopamine on the activity of these two efferent projections concerns also the biosynthesis of these opioid peptides. Using in situ hybridization histochemistry, we investigated the role of opioid co-transmission in the regulation of neostriatal and pallidal activity. The expression of the messenger RNAs encoding glutamate decarboxylase-the biosynthetic enzyme of GABA-and the precursor peptides of enkephalin (preproenkephalin) and dynorphin (preprodynorphin) were measured in rats after a sustained blockade of opioid receptors by naloxone (s.c. implanted osmotic minipump, eight days, 3 mg/kg per h), and/or a subchronic blockade of D2 dopamine receptors by haloperidol (one week, 1.25 mg/kg s.c. twice a day). The density of mu opioid receptors in the neostriatum and globus pallidus was determined by autoradiography. Naloxone treatment resulted in a strong up-regulation of neostriatal and pallidal mu opioid receptors that was not affected by the concurrent administration of haloperidol. Haloperidol alone produced a moderate down-regulation of neostriatal and pallidal micro opioid receptors. Haloperidol strongly stimulated the expression of neostriatal preproenkephalin and preprodynorphin messenger RNAs. This effect was partially attenuated by naloxone, which alone produced moderate increases in preproenkephalin and preprodynorphin messenger RNA levels. In the neostriatum, naloxone did not affect either basal or haloperidol-stimulated glutamate decarboxylase messenger RNA expression. A strong reduction of glutamate decarboxylase messenger RNA expression was detected over pallidal neurons following either naloxone or haloperidol treatment, but concurrent administration of the two antagonists did not result in a further decrease. The amplitude of the variations of mu opioid receptor density and of preproenkephalin and preprodynorphin messenger RNA levels suggests that the regulation of neostriatal and pallidal micro opioid receptors is more susceptible to a direct opioid antagonism, while the biosynthesis of opioid peptides in the neostriatum is more dependent on the dopaminergic transmission. The down-regulation of mu opioid receptors following haloperidol represents probably an adaptive change to increased enkephalin biosynthesis and release. The haloperidol-induced increase in neostriatal preprodynorphin messenger RNA expression might result from an indirect, intermittent stimulation of neostriatal D1 receptors. The haloperidol-induced decrease of pallidal glutamate decarboxylase messenger RNA expression suggests, in keeping with the current functional model of the basal ganglia, that the activation of the striatopallidal projection produced by the interruption of neostriatal dopaminergic transmission reduces the GABAergic output of the globus pallidus. The reduction of pallidal glutamate decarboxylase messenger RNA expression following opioid receptor blockade indicates an indirect, excitatory influence of enkephalin upon globus pallidus neurons and, consequently, a functional antagonism between the two neuroactive substances (GABA and enkephalin) of the striatopallidal projection in the control of globus pallidus output. Through this antagonism enkephalin could partly attenuate the GABA-mediated effects of a dopaminergic denervation on pallidal neuronal activity.
投射到苍白球的新纹状体γ-氨基丁酸能神经元合成阿片肽脑啡肽,而支配黑质网状部和内苍白球核的神经元合成强啡肽。多巴胺对这两种传出投射活动的差异控制也涉及这些阿片肽的生物合成。我们采用原位杂交组织化学方法,研究了阿片共传递在调节新纹状体和苍白球活动中的作用。在通过纳洛酮(皮下植入渗透微型泵,8天,每小时3mg/kg)持续阻断阿片受体,和/或通过氟哌啶醇(1周,每天皮下注射1.25mg/kg,每日2次)亚慢性阻断D2多巴胺受体后,测定了大鼠脑中编码γ-氨基丁酸生物合成酶谷氨酸脱羧酶以及脑啡肽(前脑啡肽原)和强啡肽(前强啡肽原)前体肽的信使核糖核酸的表达。通过放射自显影法测定新纹状体和苍白球中μ阿片受体的密度。纳洛酮处理导致新纹状体和苍白球中μ阿片受体强烈上调,同时给予氟哌啶醇对此无影响。单独使用氟哌啶醇使新纹状体和苍白球中微阿片受体适度下调。氟哌啶醇强烈刺激新纹状体前脑啡肽原和前强啡肽原信使核糖核酸表达。纳洛酮部分减弱了这一效应,单独使用纳洛酮可使前脑啡肽原和前强啡肽原信使核糖核酸水平适度升高。在新纹状体中,纳洛酮既不影响基础状态下也不影响氟哌啶醇刺激的谷氨酸脱羧酶信使核糖核酸表达。纳洛酮或氟哌啶醇处理后,苍白球神经元中谷氨酸脱羧酶信使核糖核酸表达均显著降低,但两种拮抗剂同时使用并未导致进一步降低。μ阿片受体密度以及前脑啡肽原和前强啡肽原信使核糖核酸水平变化的幅度表明,新纹状体和苍白球微阿片受体的调节对直接阿片拮抗作用更敏感,而新纹状体中阿片肽的生物合成更依赖于多巴胺能传递。氟哌啶醇后μ阿片受体下调可能是对脑啡肽生物合成和释放增加的一种适应性变化。氟哌啶醇诱导新纹状体前强啡肽原信使核糖核酸表达增加可能是由于间接、间歇性刺激新纹状体D1受体所致。氟哌啶醇诱导苍白球谷氨酸脱羧酶信使核糖核酸表达降低,与目前基底神经节的功能模型一致,提示新纹状体多巴胺能传递中断产生的纹状体苍白球投射激活减少了苍白球的γ-氨基丁酸能输出。阿片受体阻断后苍白球谷氨酸脱羧酶信使核糖核酸表达降低表明脑啡肽对苍白球神经元有间接兴奋性影响,并因此在控制苍白球输出时,纹状体苍白球投射的两种神经活性物质(γ-氨基丁酸和脑啡肽)之间存在功能拮抗。通过这种拮抗作用,脑啡肽可部分减弱多巴胺能去神经支配对苍白球神经元活动的γ-氨基丁酸介导的效应。