Suppr超能文献

闪烁相机系统的建模

Modeling of scintillation camera systems.

作者信息

Woldeselassie T

机构信息

Faculties of Technology and Medicine, Addis Ababa University, Ethiopia.

出版信息

Med Phys. 1999 Jul;26(7):1375-81. doi: 10.1118/1.598634.

Abstract

Despite their widespread use, the satisfactory modeling of scintillation camera systems has remained difficult. Although the resolving time and deadtime T of a nonparalyzable counter are identical and also invariable, a distinction needs to be made between the fixed resolving time tau0 and the variable deadtime tau of a paralyzable counter. It is shown here that tau = tau0(e(n) - 1)/n, where n = Ntau0 = N/Nmax is the normalized input rate and N the absolute input rate. The normalized output rate, r = Rtau0, where R is the absolute output rate, has a maximum value r(max) = 1/e approximately 0.368 at the input rate n(max) = 1, where tau = tau0(e - 1) approximately 1.718tau0. It is also shown that the response of a system of nonparalyzable and paralyzable components at all input rates is determined by just the dominant nonparalyzable and paralyzable components in the system, the response at any particular input rate being that of the component with the higher of the two deadtimes T or tau. A system can be purely paralyzable (kT = T/tau0 < or = 1), combined paralyzable/nonparalyzable (1 < kT < or = 1.718), or essentially nonparalyzable (kT > 1.718), the combined paralyzable/nonparalyzable system having a lower nonparalyzable (T > tau) and an upper paralyzable (tau > T) operating range separated by a threshold input rate n(t) = ln(1 + kTn(t)) at which tau = T. A highly accurate and explicit expression for n(t) has also been derived. In the essentially nonparalyzable case, the system operates as nonparalyzable all the way up to the system's peak response point, which may occur at or above n(max) = 1. A two-component system with kT > 1 can also be described mathematically as nonparalyzable using r = n/(1 + k(tau)n), where k(tau) = tau/tau0 = kT for n < or = n(t), and k(tau) = (e(n) - 1)/n for n > or = n(t), or as paralyzable using r = ne(-nk0) with k0 = [ln(1 + kTn)]/n for n < or = n(t) and k0 = 1 for n > or = n(t). These alternative descriptions will be of considerable importance in the measurement of T and tau0 for such systems. The model described is able to account fully for the three different operating modes possible with scintillation camera systems.

摘要

尽管闪烁相机系统已被广泛使用,但对其进行令人满意的建模仍然困难。对于不可瘫痪计数器,其分辨时间和死时间(T)相同且不变,但对于可瘫痪计数器,需要区分固定分辨时间(\tau_0)和可变死时间(\tau)。本文表明(\tau = \tau_0(e^n - 1)/n),其中(n = N\tau_0 = N/N_{max})是归一化输入率,(N)是绝对输入率。归一化输出率(r = R\tau_0),其中(R)是绝对输出率,在输入率(n_{max} = 1)时具有最大值(r_{max} = 1/e \approx 0.368),此时(\tau = \tau_0(e - 1) \approx 1.718\tau_0)。还表明,在所有输入率下,不可瘫痪和可瘫痪组件组成的系统的响应仅由系统中占主导的不可瘫痪和可瘫痪组件决定,在任何特定输入率下的响应是具有两个死时间(T)或(\tau)中较大值的组件的响应。一个系统可以是纯可瘫痪的((kT = T/\tau_0 \leq 1))、可瘫痪/不可瘫痪组合的((1 < kT \leq 1.718))或基本不可瘫痪的((kT > 1.718)),可瘫痪/不可瘫痪组合系统具有较低的不可瘫痪((T > \tau))和较高的可瘫痪((\tau > T))工作范围,由阈值输入率(n(t) = \ln(1 + kTn(t)))分隔,此时(\tau = T)。还推导了(n(t))的高精度显式表达式。在基本不可瘫痪的情况下,系统一直运行到系统的峰值响应点,该点可能在(n_{max} = 1)或更高处出现。对于(kT > 1)的双组件系统,也可以用(r = n/(1 + k(\tau)n))数学描述为不可瘫痪,其中当(n \leq n(t))时(k(\tau) = \tau/\tau_0 = kT),当(n \geq n(t))时(k(\tau) = (e^n - 1)/n);或者用(r = ne^{-nk_0})描述为可瘫痪,其中当(n \leq n(t))时(k_0 = [\ln(1 + kTn)]/n),当(n \geq n(t))时(k_0 = 1)。这些替代描述对于测量此类系统中的(T)和(\tau_0)将具有相当重要的意义。所描述的模型能够充分解释闪烁相机系统可能的三种不同运行模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验