Regelsberger G, Jakopitsch C, Engleder M, Rüker F, Peschek G A, Obinger C
Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria.
Biochemistry. 1999 Aug 10;38(32):10480-8. doi: 10.1021/bi990886n.
A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803 is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the first examination of second-order rate constants for the oxidation of a series of aromatic donor molecules (monosubstituted phenols and anilines) by a bifunctional catalase-peroxidase compound I using the sequential-mixing stopped-flow technique. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. A >/=50-fold excess of peroxoacetic acid is required to obtain a spectrum of relatively pure and stable compound I which is characterized by about 40% hypochromicity, a Soret maximum at 406 nm, and isosbestic points between the native enzyme and compound I at 357 and 430 nm. The apparent second-order rate constant for formation of compound I from ferric enzyme and peroxoacetic acid is (8.74 +/- 0.26) x 10(3) M(-)(1) s(-)(1) at pH 7. 0. Reduction of compound I by aromatic donor molecules is dependent upon the substituent effect on the benzene ring. The apparent second-order rate constants varied from (3.6 +/- 0.1) x 10(6) M(-)(1) s(-)(1) for p-hydroxyaniline to (5.0 +/- 0.1) x 10(2) M(-)(1) s(-)(1) for p-hydroxybenzenesulfonic acid. They are shown to correlate with the substituent constants in the Hammett equation, which suggests that in bifunctional catalase-peroxidases the aromatic donor molecule donates an electron to compound I and loses a proton simultaneously. The value of rho, the susceptibility factor in the Hammett equation, is -3.4 +/- 0.4 for the phenols and -5.1 +/- 0.8 for the anilines. The pH dependence of compound I reduction by aniline exhibits a relatively sharp maximum at pH 5. The redox intermediate formed upon reduction of compound I has spectral features which indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.
据报道,来自集胞藻PCC 6803的过氧化氢酶-过氧化物酶(KatG)的完全活性重组形式在大肠杆菌中实现了高水平表达。由于物理和动力学表征均显示其与野生型蛋白相同,大量的重组KatG使得首次能够使用顺序混合停流技术,通过双功能过氧化氢酶-过氧化物酶化合物I来检测一系列芳香供体分子(单取代酚和苯胺)氧化的二级速率常数。由于过氧化氢酶活性占主导,过氧乙酸已被用于化合物I的形成。需要过量至少50倍的过氧乙酸才能获得相对纯净且稳定的化合物I光谱,其特征为约40%的减色效应、406 nm处的Soret最大值以及在357和430 nm处天然酶与化合物I之间的等吸收点。在pH 7时,铁酶与过氧乙酸形成化合物I的表观二级速率常数为(8.74 ± 0.26) × 10³ M⁻¹ s⁻¹。芳香供体分子对化合物I的还原取决于苯环上的取代基效应。表观二级速率常数从对羟基苯胺的(3.6 ± 0.1) × 10⁶ M⁻¹ s⁻¹到对羟基苯磺酸的(5.0 ± 0.1) × 10² M⁻¹ s⁻¹不等。结果表明它们与哈米特方程中的取代基常数相关,这表明在双功能过氧化氢酶-过氧化物酶中,芳香供体分子向化合物I提供一个电子并同时失去一个质子。对于酚类,哈米特方程中的敏感性因子ρ值为-3.4 ± 0.4,对于苯胺为-5.1 ± 0.8。苯胺对化合物I还原的pH依赖性在pH 5时呈现出相对尖锐的最大值。化合物I还原时形成的氧化还原中间体具有光谱特征,这表明KatG化合物II中的单个氧化当量存在于一个与血红素没有电子耦合的氨基酸上。