Harold F M
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA.
Fungal Genet Biol. 1999 Jul-Aug;27(2-3):128-33. doi: 10.1006/fgbi.1999.1124.
We know organisms first of all by their forms. Rabbit and carrot, Neurospora, and Paramecium represent particular shapes and structures, patterns in space and time. Each pattern integrates innumerable molecules into a coherent whole, reproduces itself from one generation to the next, and may persist in this manner for millions of years. In this lecture, I shall discuss efforts to render a dynamic and causal account of biological morphogenesis, using fungal hyphae as a concrete exemplar. Molecular structures and interactions are necessary but not sufficient to specify patterns on a scale three to five orders of magnitude larger. The search for alternatives leads to the importation of the concept of dynamic fields, exemplified by the proposal of Bartnicki-Garcia and Gierz that apical growth and morphogenesis report the operation of a mobile vesicle-supply center. Application of field theories to biological morphogenesis is still at an early stage, but is necessary in order to resolve the paradoxical relationship between genes and form.
我们首先通过生物的形态来认识它们。兔子、胡萝卜、链孢霉和草履虫都代表着特定的形状和结构,是时空上的模式。每种模式都将无数分子整合为一个连贯的整体,代代相传,并可能以这种方式持续数百万年。在本次讲座中,我将以真菌菌丝为例,探讨对生物形态发生进行动态因果解释的相关研究。分子结构和相互作用是必要的,但不足以确定比其大三个到五个数量级规模的模式。对替代方法的探索促使了动态场概念的引入,例如巴特尼基 - 加西亚和吉尔兹提出的顶端生长和形态发生反映了一个移动的囊泡供应中心的运作这一观点。场论在生物形态发生中的应用仍处于早期阶段,但为了解决基因与形态之间看似矛盾的关系,这是必要的。