Suppr超能文献

Myogenic mechanism for peristalsis in the cat esophagus.

作者信息

Preiksaitis H G, Diamant N E

机构信息

Departments of Medicine and Physiology, University of Western Ontario, London, Ontario, N6A 5B8 Canada.

出版信息

Am J Physiol. 1999 Aug;277(2):G306-13. doi: 10.1152/ajpgi.1999.277.2.G306.

Abstract

A myogenic control system (MCS) is a fundamental determinant of peristalsis in the stomach, small bowel, and colon. In the esophagus, attention has focused on neuronal control, the potential for a MCS receiving less attention. The myogenic properties of the cat esophagus were studied in vitro with and without nerves blocked by 1 microM TTX. Muscle contraction was recorded, while electrical activity was monitored by suction electrodes. Spontaneous, nonperistaltic, electrical, and mechanical activity was seen in the longitudinal muscle and persisted after TTX. Spontaneous circular muscle activity was minimal, and peristalsis was not observed without pharmacological activation. Direct electrical stimulation (ES) in the presence of bethanechol or tetraethylammonium chloride (TEA) produced slow-wave oscillations and spike potentials accompanying smooth muscle contraction that progressed along the esophagus. Increased concentrations of either drug in the presence of TTX produced slow waves and spike discharges, accompanied by peristalsis in 5 of 8 TEA- and 2 of 11 bethanechol-stimulated preparations without ES. Depolarization of the muscle by increasing K(+) concentration also produced slow waves but no peristalsis. We conclude that the MCS in the esophagus requires specific activation and is manifest by slow-wave oscillations of the membrane potential, which appear to be necessary, but are not sufficient for myogenic peristalsis. In vivo, additional control mechanisms are likely supplied by nerves.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验