Suppr超能文献

Prp8与RNA活性位点残基之间的等位基因特异性遗传相互作用表明Prp8在剪接体催化核心中发挥作用。

Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome.

作者信息

Collins C A, Guthrie C

机构信息

Graduate Group in Biophysics, University of California San Francisco (UCSF), San Francisco, California 94143-0448, USA.

出版信息

Genes Dev. 1999 Aug 1;13(15):1970-82. doi: 10.1101/gad.13.15.1970.

Abstract

The highly conserved spliceosomal protein Prp8 is known to cross-link the critical sequences at both the 5' (GU) and 3' (YAG) ends of the intron. We have identified prp8 mutants with the remarkable property of suppressing exon ligation defects due to mutations in position 2 of the 5' GU, and all positions of the 3' YAG. The prp8 mutants also suppress mutations in position A51 of the critical ACAGAG motif in U6 snRNA, which has been observed previously to cross-link position 2 of the 5' GU. Other mutations in the 5' splice site, branchpoint, and neighboring residues of the U6 ACAGAG motif are not suppressed. Notably, the suppressed residues are specifically conserved from yeast to man, and from U2- to U12-dependent spliceosomes. We propose that Prp8 participates in a previously unrecognized tertiary interaction between U6 snRNA and both the 5' and 3' ends of the intron. This model suggests a mechanism for positioning the 3' splice site for catalysis, and assigns a fundamental role for Prp8 in pre-mRNA splicing.

摘要

众所周知,高度保守的剪接体蛋白Prp8能够交联内含子5'端(GU)和3'端(YAG)的关键序列。我们已经鉴定出prp8突变体,其具有显著特性,即能够抑制由于5' GU的第2位以及3' YAG的所有位置发生突变而导致的外显子连接缺陷。prp8突变体还能抑制U6 snRNA中关键ACAGAG基序的A51位突变,此前已观察到该基序可与5' GU的第2位交联。5'剪接位点、分支点以及U6 ACAGAG基序的相邻残基中的其他突变则未被抑制。值得注意的是,被抑制的残基从酵母到人以及从U2依赖型剪接体到U12依赖型剪接体都具有特异性保守性。我们提出,Prp8参与了U6 snRNA与内含子5'端和3'端之间一种此前未被认识的三级相互作用。该模型揭示了一种将3'剪接位点定位以进行催化的机制,并赋予Prp8在pre-mRNA剪接中的重要作用。

相似文献

2
Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center.
Genes Dev. 1999 Aug 1;13(15):1983-93. doi: 10.1101/gad.13.15.1983.
3
Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome.
Mol Cell. 1999 Jan;3(1):65-75. doi: 10.1016/s1097-2765(00)80175-6.
6
Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing.
Nucleic Acids Res. 1995 Feb 11;23(3):320-6. doi: 10.1093/nar/23.3.320.
8
Structure of a spliceosome remodelled for exon ligation.
Nature. 2017 Feb 16;542(7641):377-380. doi: 10.1038/nature21078. Epub 2017 Jan 11.
9
Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9145-9. doi: 10.1073/pnas.102304299. Epub 2002 Jun 26.
10
Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly.
Nucleic Acids Res. 2013 Apr 1;41(6):3805-18. doi: 10.1093/nar/gkt062. Epub 2013 Feb 7.

引用本文的文献

4
Structures of the human pre-catalytic spliceosome and its precursor spliceosome.
Cell Res. 2018 Dec;28(12):1129-1140. doi: 10.1038/s41422-018-0094-7. Epub 2018 Oct 12.
6
Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4739-4744. doi: 10.1073/pnas.1701462114. Epub 2017 Apr 17.
7
A close-up look at the spliceosome, at last.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4288-4293. doi: 10.1073/pnas.1700390114. Epub 2017 Apr 13.
8
Genetics and biochemistry remain essential in the structural era of the spliceosome.
Methods. 2017 Aug 1;125:3-9. doi: 10.1016/j.ymeth.2017.01.006. Epub 2017 Jan 26.
9
Cryo-EM structure of a human spliceosome activated for step 2 of splicing.
Nature. 2017 Feb 16;542(7641):318-323. doi: 10.1038/nature21079. Epub 2017 Jan 11.
10
The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches.
EMBO Rep. 2015 Dec;16(12):1640-55. doi: 10.15252/embr.201541116. Epub 2015 Nov 13.

本文引用的文献

1
Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center.
Genes Dev. 1999 Aug 1;13(15):1983-93. doi: 10.1101/gad.13.15.1983.
2
The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes.
RNA. 1999 Jul;5(7):893-908. doi: 10.1017/s1355838299990520.
3
A detailed view of a ribosomal active site: the structure of the L11-RNA complex.
Cell. 1999 May 14;97(4):491-502. doi: 10.1016/s0092-8674(00)80759-x.
4
Crystal structure of a conserved ribosomal protein-RNA complex.
Science. 1999 May 14;284(5417):1171-4. doi: 10.1126/science.284.5417.1171.
7
Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome.
Mol Cell. 1999 Jan;3(1):65-75. doi: 10.1016/s1097-2765(00)80175-6.
9
Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae.
RNA. 1998 Oct;4(10):1239-50. doi: 10.1017/s1355838298981109.
10
Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns.
Mol Cell. 1997 Dec;1(1):151-60. doi: 10.1016/s1097-2765(00)80016-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验