Cini R
Department of Chemical and Biosystem Sciences and Technologies, University of Siena, Italy.
J Biomol Struct Dyn. 1999 Jun;16(6):1225-37. doi: 10.1080/07391102.1999.10508330.
Geometry optimization and energy calculations have been performed at the density functional B3LYP/LANL2DZ level on hydrogen sulfide (HS-), dihydrogensulfide (H2S), thiomethanolate (CH3S-), thiomethanol (CH3SH), thiophenolate (C6H5S-), methoxyde (CH3O-), methanol (CH3OH), formiate (HCOO-), acetate (CH3COO-), carbonate (CO3(2-)), hydrogen carbonate (HCO3-), iminomethane (NH=CH2), [ZnS], [ZnS2]2-, [Zn(HS)]+, [Zn(H2S)]2+, [Zn(HS)4]2-, [Zn(CH3S)]+, [Zn(CH3S)2], [Zn(CH3S)3]-, [Zn(CH3S)4]2-, [Zn(CH3SH)]2+, [Zn(CH3SCH3)]2+, [Zn(C6H5S)]+, [Zn(C6H5S)2], [Zn(C6H5S)3]-, [Zn(HS)(NH=CH2)2]+, [Zn(HS)2(NH=CH2)2], [Zn(HS)(H2O)]+, [Zn(HS)(HCOO)], [Zn(HS)2(HCOO)]-, [Zn(CH3O)]+, [Zn(CH3O)2], [Zn(CH3O)3]-, [Zn(CH3O)4]2, [Zn(CH3OH)]2+, [Zn(HCOO)]+, [Zn(CH3COO)]+, [Zn(CH3COO)2], [Zn(CH3COO)3]-, [Zn(CO3)], [Zn(HCO3)]+, and [Zn(HCO3)(Imz)]+ (Imz, 1,3-imidazole). The computed Zn-S bond distances are 2.174A for [ZnS], 2.274 for [Zn(HS)]+, 2.283 for [Zn(CH3S)]+, and 2.271 for [Zn(C6H5S)]+, showing that sulfide anion forms stronger bonds than substituted sulfides. The nature of the substituents on sulfur influences only slightly the Zn-S distance. The optimized tetra-coordinate [Zn(HS)2(NH=CH2)2] molecules has computed Zn-S and Zn-N bond distances of 2.392 and 2.154A which compare well with the experimental values at the solid state obtained via X-ray diffraction for a number of complex molecules. The computed Zn-O bond distances for chelating carboxylate derivatives like [Zn(HOCOO)]+ (1.998A), [Zn(HCOO)]+ (2.021), and [Zn(CH3COO)]+ (2.001) shows that the strength of the bond is not much influenced by the substituent on carboxylic carbon atom and that CH3- and HO- groups have very similar effects. The DFT analysis shows also that the carboxylate Ligand has a preference for the bidentate mode instead of the monodentate one, at least when the coordination number is small.
在密度泛函B3LYP/LANL2DZ水平上,对硫化氢(HS-)、二硫化氢(H2S)、硫代甲醇盐(CH3S-)、硫代甲醇(CH3SH)、硫酚盐(C6H5S-)、甲氧基(CH3O-)、甲醇(CH3OH)、甲酸盐(HCOO-)、乙酸盐(CH3COO-)、碳酸盐(CO3(2-))、碳酸氢盐(HCO3-)、亚氨基甲烷(NH=CH2)、[ZnS]、[ZnS2]2-、[Zn(HS)]+、[Zn(H2S)]2+、[Zn(HS)4]2-、[Zn(CH3S)]+、[Zn(CH3S)2]、[Zn(CH3S)3]-、[Zn(CH3S)4]2-、[Zn(CH3SH)]2+、[Zn(CH3SCH3)]2+、[Zn(C6H5S)]+、[Zn(C6H5S)2]、[Zn(C6H5S)3]-、[Zn(HS)(NH=CH2)2]+、[Zn(HS)2(NH=CH2)2]、[Zn(HS)(H2O)]+、[Zn(HS)(HCOO)]、[Zn(HS)2(HCOO)]-、[Zn(CH3O)]+、[Zn(CH3O)2]、[Zn(CH3O)3]-、[Zn(CH3O)4]2、[Zn(CH3OH)]2+、[Zn(HCOO)]+、[Zn(CH3COO)]+、[Zn(CH3COO)2]、[Zn(CH3COO)3]-、[Zn(CO3)]、[Zn(HCO3)]+和[Zn(HCO3)(Imz)]+(Imz,1,3-咪唑)进行了几何优化和能量计算。计算得到的[ZnS]的Zn-S键长为2.174埃,[Zn(HS)]+的为2.274埃,[Zn(CH3S)]+的为2.283埃,[Zn(C6H5S)]+的为2.271埃,表明硫阴离子形成的键比取代硫化物更强。硫上取代基的性质对Zn-S距离的影响很小。优化后的四配位[Zn(HS)2(NH=CH2)2]分子计算得到的Zn-S和Zn-N键长分别为2.392和2.154埃,与通过X射线衍射获得的一些复杂分子固态实验值相当。对于螯合羧酸盐衍生物,如[Zn(HOCOO)]+(1.998埃)、[Zn(HCOO)]+(2.021埃)和[Zn(CH3COO)]+(2.001埃),计算得到的Zn-O键长表明键的强度受羧基碳原子上取代基的影响不大,且CH3-和HO-基团的影响非常相似。DFT分析还表明,至少当配位数较小时,羧酸盐配体更倾向于双齿模式而非单齿模式。