Rich R L, Deivanayagam C C, Owens R T, Carson M, Höök A, Moore D, Symersky J, Yang V W, Narayana S V, Höök M
Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA.
J Biol Chem. 1999 Aug 27;274(35):24906-13. doi: 10.1074/jbc.274.35.24906.
Most mammalian cells and some pathogenic bacteria are capable of adhering to collagenous substrates in processes mediated by specific cell surface adherence molecules. Crystal structures of collagen-binding regions of the human integrin alpha(2)beta(1) and a Staphylococcus aureus adhesin reveal a "trench" on the surface of both of these proteins. This trench can accommodate a collagen triple-helical structure and presumably represents the ligand-binding site (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517; Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Höök, M., and Narayana, S. V. L. (1997) Nat. Struct. Biol. 4, 833-838). We report here the crystal structure of the alpha subunit I domain from the alpha(1)beta(1) integrin. This collagen-binding protein also contains a trench on one face in which the collagen triple helix may be docked. Furthermore, we compare the collagen-binding mechanisms of the human alpha(1) integrin I domain and the A domain from the S. aureus collagen adhesin, Cna. Although the S. aureus and human proteins have unrelated amino acid sequences, secondary structure composition, and cation requirements for effective ligand binding, both proteins bind at multiple sites within one collagen molecule, with the sites in collagen varying in their affinity for the adherence molecule. We propose that (i) these evolutionarily dissimilar adherence proteins recognize collagen via similar mechanisms, (ii) the multisite, multiclass protein/ligand interactions observed in these two systems result from a binding-site trench, and (iii) this unusual binding mechanism may be thematic for proteins binding extended, rigid ligands that contain repeating structural motifs.
大多数哺乳动物细胞和一些致病细菌能够在特定细胞表面黏附分子介导的过程中黏附于胶原质底物。人整合素α(2)β(1)和金黄色葡萄球菌黏附素的胶原结合区域的晶体结构显示,这两种蛋白质表面均有一个“沟槽”。该沟槽可容纳胶原三螺旋结构,推测为配体结合位点(埃姆斯利,J.,金,S. L.,伯格elson,J. M., 利丁顿,R. C.(1997年)《生物化学杂志》272, 28512 - 28517;西默斯基,J.,帕蒂,J. M., 卡森,M., 豪斯 - 庞佩奥,K., 蒂尔,M., 摩尔,D., 金,L., 施耐德,A., 德卢卡斯,L. J., 胡克,M., 纳拉亚纳,S. V. L.(1997年)《自然结构生物学》4, 833 - 838)。我们在此报告α(1)β(1)整合素α亚基I结构域的晶体结构。这种胶原结合蛋白在其一个表面也含有一个沟槽,胶原三螺旋可能对接于此。此外,我们比较了人α(1)整合素I结构域与金黄色葡萄球菌胶原黏附素Cna的A结构域的胶原结合机制。尽管金黄色葡萄球菌和人的蛋白质具有不相关的氨基酸序列、二级结构组成以及有效配体结合所需的阳离子,但这两种蛋白质均在一个胶原分子内的多个位点结合,胶原中的这些位点对黏附分子的亲和力各不相同。我们提出:(i)这些在进化上不相似的黏附蛋白通过相似机制识别胶原;(ii)在这两个系统中观察到的多位点、多类别的蛋白质/配体相互作用是由结合位点沟槽导致的;(iii)这种不同寻常的结合机制可能是结合含有重复结构基序的延伸刚性配体的蛋白质的共同特征。