Kagan V E, Yalowich J C, Borisenko G G, Tyurina Y Y, Tyurin V A, Thampatty P, Fabisiak J P
Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Mol Pharmacol. 1999 Sep;56(3):494-506. doi: 10.1124/mol.56.3.494.
Etoposide (VP-16) is extensively used to treat cancer, yet its efficacy is calamitously associated with an increased risk of secondary acute myelogenous leukemia. The mechanisms for the extremely high susceptibility of myeloid stem cells to the leukemogenic effects of etoposide have not been elucidated. We propose a mechanism to account for the etoposide-induced secondary acute myelogenous leukemia and nutritional strategies to prevent this complication of etoposide therapy. We hypothesize that etoposide phenoxyl radicals (etoposide-O(.)) formed from etoposide by myeloperoxidase are responsible for its genotoxic effects in bone marrow progenitor cells, which contain constitutively high myeloperoxidase activity. Here, we used purified human myeloperoxidase, as well as human leukemia HL60 cells with high myeloperoxidase activity and provide evidence of the following. 1) Etoposide undergoes one-electron oxidation to etoposide-O(.) catalyzed by both purified myeloperoxidase and myeloperoxidase activity in HL60 cells; formation of etoposide-O(.)radicals is completely blocked by myeloperoxidase inhibitors, cyanide and azide. 2) Intracellular reductants, GSH and protein sulfhydryls (but not phospholipids), are involved in myeloperoxidase-catalyzed etoposide redox-cycling that oxidizes endogenous thiols; pretreatment of HL60 cells with a maleimide thiol reagent, ThioGlo1, prevents redox-cycling of etoposide-O(.) radicals and permits their direct electron paramagnetic resonance detection in cell homogenates. VP-16 redox-cycling by purified myeloperoxidase (in the presence of GSH) or by myeloperoxidase activity in HL60 cells is accompanied by generation of thiyl radicals, GS(.), determined by HPLC assay of 5, 5-dimethyl-1-pyrroline glytathionyl N-oxide glytathionyl nitrone adducts. 3) Ascorbate directly reduces etoposide-O(.), thus competitively inhibiting etoposide-O(.)-induced thiol oxidation. Ascorbate also diminishes etoposide-induced topo II-DNA complex formation in myeloperoxidase-rich HL60 cells (but not in HL60 cells with myeloperoxidase activity depleted by pretreatment with succinyl acetone). 4) A vitamin E homolog, 2,2,5,7, 8-pentamethyl-6-hydroxychromane, a hindered phenolic compound whose phenoxyl radicals do not oxidize endogenous thiols, effectively competes with etoposide as a substrate for myeloperoxidase, thus preventing etoposide-O(.)-induced redox-cycling. We conclude that nutritional antioxidant strategies can be targeted at minimizing etoposide conversion to etoposide-O(.), thus minimizing the genotoxic effects of the radicals in bone marrow myelogenous progenitor cells, i.e., chemoprevention of etoposide-induced acute myelogenous leukemia.
依托泊苷(VP - 16)被广泛用于治疗癌症,但其疗效却不幸地与继发性急性髓性白血病风险增加相关。髓系干细胞对依托泊苷致白血病作用极易感的机制尚未阐明。我们提出一种机制来解释依托泊苷诱导的继发性急性髓性白血病以及预防依托泊苷治疗这种并发症的营养策略。我们推测,髓过氧化物酶将依托泊苷转化形成的依托泊苷苯氧基自由基(依托泊苷 - O(.))是其在骨髓祖细胞中产生基因毒性作用的原因,而骨髓祖细胞中髓过氧化物酶活性本就持续较高。在此,我们使用了纯化的人髓过氧化物酶以及具有高髓过氧化物酶活性的人白血病HL60细胞,并提供了以下证据。1)在纯化的髓过氧化物酶以及HL60细胞中的髓过氧化物酶活性催化下,依托泊苷发生单电子氧化生成依托泊苷 - O(.);髓过氧化物酶抑制剂氰化物和叠氮化物可完全阻断依托泊苷 - O(.)自由基的形成。2)细胞内还原剂谷胱甘肽(GSH)和蛋白质巯基(而非磷脂)参与髓过氧化物酶催化的依托泊苷氧化还原循环,该循环会氧化内源性硫醇;用马来酰亚胺硫醇试剂硫代荧光素1(ThioGlo1)预处理HL60细胞可防止依托泊苷 - O(.)自由基的氧化还原循环,并使其在细胞匀浆中能直接进行电子顺磁共振检测。纯化的髓过氧化物酶(在GSH存在下)或HL60细胞中的髓过氧化物酶活性介导的VP - 16氧化还原循环会伴随硫自由基GS(.)的生成,这通过对5,5 - 二甲基 - 1 - 吡咯啉谷胱甘肽亚硝基氧化物谷胱甘肽亚硝基加合物的高效液相色谱分析得以确定。3)抗坏血酸直接还原依托泊苷 - O(.),从而竞争性抑制依托泊苷 - O(.)诱导的硫醇氧化。抗坏血酸还可减少依托泊苷在富含髓过氧化物酶的HL60细胞中诱导形成的拓扑异构酶II - DNA复合物(但在用琥珀酰丙酮预处理使髓过氧化物酶活性降低的HL60细胞中则无此作用)。4)维生素E同系物2,2,5,7,8 - 五甲基 - 6 - 羟基色满,一种受阻酚类化合物,其苯氧基自由基不会氧化内源性硫醇,它可有效与依托泊苷竞争作为髓过氧化物酶的底物,从而防止依托泊苷 - O(.)诱导的氧化还原循环。我们得出结论,营养抗氧化策略可旨在将依托泊苷转化为依托泊苷 - O(.)的过程降至最低,从而将自由基在骨髓髓系祖细胞中的基因毒性作用降至最低,即对依托泊苷诱导的急性髓性白血病进行化学预防。