Kagawa Y
Graduate School, Women's University of Nutrition, Saitama, Japan.
Adv Biophys. 1999;36:1-25. doi: 10.1016/s0065-227x(99)80003-3.
The isolation of ATP synthase (F0F1) (82) and F0 (83) 34 years ago finally revealed that F0F1 is a motor composed of F0 (ion-motor, abc subunits) and F1 (ATP-motor, alpha 3 beta 3 gamma delta epsilon subunits) (Fig. 1). The single molecule videotape (4, 5, 65, 66) revealed that gamma epsilon axis of F1 rotates counterclockwise, proceeds by each 2 pi/3 step, and is driven by torque of 42 pN.nm (12) with nearly 100% efficiency (5) (Fig. 4). The motor is composed of a rotor (gamma epsilon-F0-c) and a stator (alpha 3 beta 3 delta-F0-ab), and the rotor is connected to a shaft (gamma epsilon). Since F0F1 is driven by delta microH+ (9, 10, 84), biophysical studies on stable TF0F1 (1, 7) are essential to elucidate the mechanism. These include nanomechanics (4, 5) (Fig. 4), crystallography (2, 3) (Figs. 2 and 3), NMR (51, 52), ESR (56), synchrotron analysis (3, 28), and electrophysiology (10, 25). The KmATP value of rotation is 0.8 microM, with the Vmax of 3.9 rps (5). This corresponds to the bi-site catalysis in proton transport by F0F1 (10, 70, 84). X-ray crystallography of MF1 (2) and the alpha 3 beta 3 oligomer of TF1 (3) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in alpha 3 beta 3 gamma during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF1. Both theories (6, 7, 62, 64, 85) and the biological significance (17) of the intramolecular rotation of F0F1 await further studies, especially those of F0 and minor subunits.
34年前,ATP合酶(F0F1)(82)和F0(83)的分离最终揭示了F0F1是一种由F0(离子马达,abc亚基)和F1(ATP马达,α3β3γεδ亚基)组成的马达(图1)。单分子录像(4,5,65,66)显示,F1的γε轴逆时针旋转,每次前进2π/3步,并由42 pN·nm的扭矩驱动(12),效率接近100%(5)(图4)。该马达由一个转子(γε - F0 - c)和一个定子(α3β3δ - F0 - ab)组成,转子连接到一根轴(γε)。由于F0F1由δμH⁺驱动(9,10,84),因此对稳定的TF0F1进行生物物理研究(1,7)对于阐明其机制至关重要。这些研究包括纳米力学(4,5)(图4)、晶体学(2,3)(图2和图3)、核磁共振(51,52)、电子顺磁共振(56)、同步加速器分析(3,28)和电生理学(10,25)。旋转的KmATP值为0.8 μM,Vmax为3.9 rps(5)。这对应于F0F1在质子运输中的双位点催化(10,70,84)。MF1的X射线晶体学(2)和TF1的α3β3寡聚体(3)(图2)以及突变分析揭示了旋转中残基的作用。在ATP结合后的步进时间(长达几秒)内,α3β3γ中提出了弹性能量储存的观点。生物学研究部分阐明了MF1中旋转的遗传和动力学调控。F0F1分子内旋转的理论(6,7,62,64,85)和生物学意义(17)都有待进一步研究,尤其是F0和小亚基的研究。