Suppr超能文献

Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase analyzed by cysteine replacement mutagenesis.

作者信息

Harrison M A, Murray J, Powell B, Kim Y I, Finbow M E, Findlay J B

机构信息

School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.

出版信息

J Biol Chem. 1999 Sep 3;274(36):25461-70. doi: 10.1074/jbc.274.36.25461.

Abstract

Theoretical mechanisms of proton translocation by the vacuolar H(+)-ATPase require that a transmembrane acidic residue of the multicopy 16-kDa proteolipid subunit be exposed at the exterior surface of the membrane sector of the enzyme, contacting the lipid phase. However, structural support for this theoretical mechanism is lacking. To address this, we have used cysteine mutagenesis to produce a molecular model of the 16-kDa proteolipid complex. Transmembrane helical contacts were determined using oxidative cysteine cross-linking, and accessibility of cysteines to the lipid phase was determined by their reactivity to the lipid-soluble probe N-(1-pyrenyl)maleimide. A single model for organization of the four helices of each monomeric proteolipid was the best fit to the experimental data, with helix 1 lining a central pore and helix 2 and helix 3 immediately external to it and forming the principal intermolecular contacts. Helix 4, containing the crucial acidic residue, is peripheral to the complex. The model is consistent not only with theoretical proton transport mechanisms, but has structural similarity to the dodecameric ring complex formed by the related 8-kDa proteolipid of the F(1)F(0)-ATPase. This suggests some commonality between the proton translocating mechanisms of the vacuolar and F(1)F(0)-ATPases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验