Suppr超能文献

Interactions of (-)-ilimaquinone with methylation enzymes: implications for vesicular-mediated secretion.

作者信息

Radeke H S, Digits C A, Casaubon R L, Snapper M L

机构信息

Eugene F Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467-3860, USA.

出版信息

Chem Biol. 1999 Sep;6(9):639-47. doi: 10.1016/s1074-5521(99)80115-x.

Abstract

BACKGROUND

The marine sponge metabolite (-)-ilimaquinone has antimicrobial, anti-HIV, anti-inflammatory and antimitotic activities, inhibits the cytotoxicity of ricin and diptheria toxin, and selectively fragments the Golgi apparatus. The range of activities demonstrated by this natural product provides a unique opportunity for studying these cellular processes.

RESULTS

Affinity chromatography experiments show that (-)-ilimaquinone interacts with enzymes of the activated methyl cycle: S-adenosylmethionine synthetase, S-adenosylhomocysteinase and methyl transferases. Known inhibitors of these enzymes were found to block vesicle-mediated secretion in a manner similar to (-)-ilimaquinone. Moreover, the antisecretory effects of (-)-ilimaquinone and inhibitors of methylation chemistry, but not brefeldin A, could be reversed in the presence of the cellular methylating agent S-adenosylmethionine. Of the enzymes examined in the activated methyl cycle, S-adenosylhomocysteinase was specifically inhibited by (-)-ilimaquinone. Consistent with these observations, (-)-ilimaquinone was shown to obstruct new methylation events in adrenocorticotrophic hormone (ACTH)-secreting pituitary cells.

CONCLUSIONS

(-)-ilimaquinone inhibits cellular methylations through its interactions with S-adenosylhomocysteinase. Furthermore, these studies indicate that the inhibition of secretion by ilimaquinone is the result of the natural product's antimethylation activity. It is likely that the ability to fragment the Golgi apparatus, as well as other activities, are also related to ilimaquinone's influence on methylation chemistry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验