Heissmeyer V, Krappmann D, Wulczyn F G, Scheidereit C
Max-Delbrück-Center for Molecular Medicine, MDC, Robert-Rössle-Strasse 10, D-13122 Berlin, Germany.
EMBO J. 1999 Sep 1;18(17):4766-78. doi: 10.1093/emboj/18.17.4766.
The NF-kappaB precursor p105 has dual functions: cytoplasmic retention of attached NF-kappaB proteins and generation of p50 by processing. It is poorly understood whether these activities of p105 are responsive to signalling processes that are known to activate NF-kappaB p50-p65. We propose a model that p105 is inducibly degraded, and that its degradation liberates sequestered NF-kappaB subunits, including its processing product p50. p50 homodimers are specifically bound by the transcription activator Bcl-3. We show that TNFalpha, IL-1beta or phorbolester (PMA) trigger rapid formation of Bcl-3-p50 complexes with the same kinetics as activation of p50-p65 complexes. TNF-alpha-induced Bcl-3-p50 formation requires proteasome activity, but is independent of p50-p65 released from IkappaBalpha, indicating a pathway that involves p105 proteolysis. The IkappaB kinases IKKalpha and IKKbeta physically interact with p105 and inducibly phosphorylate three C-terminal serines. p105 is degraded upon TNF-alpha stimulation, but only when the IKK phospho-acceptor sites are intact. Furthermore, a p105 mutant, lacking the IKK phosphorylation sites, acts as a super-repressor of IKK-induced NF-kappaB transcriptional activity. Thus, the known NF-kappaB stimuli not only cause nuclear accumulation of p50-p65 heterodimers but also of Bcl-3-p50 and perhaps further transcription activator complexes which are formed upon IKK-mediated p105 degradation.
核因子-κB前体p105具有双重功能:使附着的核因子-κB蛋白保留在细胞质中,并通过加工产生p50。目前对于p105的这些活性是否对已知能激活核因子-κB p50-p65的信号传导过程有反应还知之甚少。我们提出一个模型,即p105被诱导降解,其降解释放出被隔离的核因子-κB亚基,包括其加工产物p50。p50同二聚体被转录激活因子Bcl-3特异性结合。我们发现,肿瘤坏死因子α(TNFα)、白细胞介素-1β(IL-1β)或佛波酯(PMA)以与激活p50-p65复合物相同的动力学触发Bcl-3-p50复合物的快速形成。TNF-α诱导的Bcl-3-p50形成需要蛋白酶体活性,但与从IκBα释放的p50-p65无关,表明这是一条涉及p105蛋白水解的途径。IκB激酶IKKα和IKKβ与p105发生物理相互作用,并诱导性地磷酸化三个C末端丝氨酸。p105在TNF-α刺激后会降解,但只有当IKK磷酸化位点完整时才会发生。此外,一个缺乏IKK磷酸化位点的p105突变体可作为IKK诱导的核因子-κB转录活性的超级抑制剂。因此,已知的核因子-κB刺激因素不仅会导致p50-p65异二聚体在细胞核内积累,还会导致Bcl-3-p50以及可能在IKK介导的p105降解后形成的其他转录激活因子复合物在细胞核内积累。