Geisler R, Rauch G J, Baier H, van Bebber F, Bross L, Dekens M P, Finger K, Fricke C, Gates M A, Geiger H, Geiger-Rudolph S, Gilmour D, Glaser S, Gnügge L, Habeck H, Hingst K, Holley S, Keenan J, Kirn A, Knaut H, Lashkari D, Maderspacher F, Martyn U, Neuhauss S, Neumann C, Nicolson T, Pelegri F, Ray R, Rick J M, Roehl H, Roeser T, Schauerte H E, Schier A F, Schönberger U, Schönthaler H B, Schulte-Merker S, Seydler C, Talbot W S, Weiler C, Nüsslein-Volhard C, Haffter P
Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, 72076 Tübingen, Germany.
Nat Genet. 1999 Sep;23(1):86-9. doi: 10.1038/12692.
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.
最近的大规模诱变筛选已使斑马鱼成为首个能够采用正向遗传学方法来发现发育控制基因的脊椎动物。突变可以通过定位克隆,或者置于简单序列长度多态性(SSLP)图谱上,以便将它们与已定位的候选基因和表达序列标签(EST)进行匹配。为了便于候选基因的定位,并增加可用于定位克隆的标记密度,我们构建了斑马鱼基因组的辐射杂种(RH)图谱。这项技术基于将受致死剂量照射的目标物种细胞与啮齿动物细胞系融合产生的体细胞杂种细胞系。供体染色体的随机片段整合到受体染色体中,或作为单独的小染色体保留。辐射诱导的断点可用于类似遗传图谱构建的定位,但分辨率更高且无需多态性。基于三个不同分辨率的RH面板,人类以及狗、大鼠和小鼠都有全基因组图谱。对于我们的斑马鱼基因组图谱,我们使用了一个现有的RH面板和1451个序列标签位点(STS)标记,包括SSLP、克隆的候选基因和EST。其中,1275个(87.9%)与至少一个其他标记有显著连锁。具有显著连锁的EST比例(可用于估计图谱覆盖范围)为81.9%。我们发现平均标记保留频率为18.4%。一个cR3000相当于61 kb,潜在分辨率约为350 kb。