Suppr超能文献

In vivo adenovirus-mediated gene transfer and expression in ischemic rabbit spinal cord.

作者信息

Sakurai M, Abe K, Hayashi T, Warita H, Setoguchi Y, Itoyama Y, Tabayashi K

机构信息

Department of Thoracic and Cardiovascular Surgery, Tohoku University School of Medicine, Sendai, Okayama, Japan.

出版信息

J Vasc Surg. 1999 Sep;30(3):542-50. doi: 10.1016/s0741-5214(99)70082-0.

Abstract

PURPOSE

In an attempt to study whether ischemic spinal cord expresses a foreign gene in vivo, a replication-defective adenoviral vector containing the Escherichia coli lacZ gene was directly injected into the ischemic spinal cord of rabbits, and temporal and spatial profiles of the exogenous gene expression were compared with that of the control spinal cord.

METHODS

Thirty-nine Japanese domesticated white rabbits weighing 2 to 3 kg were used in this study and were divided into two subgroups, a 15-minute ischemia group and a sham control group. The adenoviral vector was directly injected into lumbar spinal cord by a needle from dorsal spine just after the infrarenal aortic occlusion in the case of ischemia. Animals were allowed to recover at ambient temperature and were killed at 1, 2, 4, and 7 days after reperfusion (n = 3 at each time point).

RESULTS

In the control rabbit, adenoviral vector was transferred into the spinal cord, and the lacZ gene was expressed at dorsal astroglia and anterior motor neurons at 1 to 7 days of reperfusion. After 15 minutes of ischemia, the lacZ gene was expressed at 2 and 4 days of reperfusion in dorsal astroglia and anterior motor neurons, which were positive for Fas antigen.

CONCLUSION

This result suggests that it is possible to transfer and express the lacZ gene in ischemic motor neurons, which eventually show apoptotic change with induction of Fas antigen, and also suggests a great potential of gene therapy for paraplegic patients in the future.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验