Suppr超能文献

黄病毒衣壳蛋白中NS2B - NS3介导的切割位点的诱变表明了协同加工的必要性。

Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing.

作者信息

Amberg S M, Rice C M

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.

出版信息

J Virol. 1999 Oct;73(10):8083-94. doi: 10.1128/JVI.73.10.8083-8094.1999.

Abstract

Analysis of flavivirus polyprotein processing has revealed the presence of a substrate for the virus-encoded NS2B-NS3 protease at the carboxy-terminal end of the C (capsid or core) protein. Cleavage at this site has been implicated in the efficient generation of the amino terminus of prM via signal peptidase cleavage. Yellow fever virus has four basic residues (Arg-Lys-Arg-Arg) in the P1 through P4 positions of this cleavage site. Multiple alanine substitutions were made for these residues in order to investigate the substrate specificity and biological significance of this cleavage. Mutants were analyzed by several methods: (i) a cell-free trans processing assay for direct analysis of NS2B-NS3-mediated cleavage; (ii) a trans processing assay in BHK-21 cells, using a C-prM polyprotein, for analysis of prM production; (iii) an infectivity assay of full-length transcripts to determine plaque-forming ability; and (iv) analysis of proteins expressed from full-length transcripts to assess processing in the context of the complete genome. Mutants that exhibited severe defects in processing in vitro and in vivo were incapable of forming plaques. Mutants that contained two adjacent basic residues within the P1 through P4 region were processed more efficiently in vitro and in vivo, and transcripts bearing these mutations were fully infectious. Furthermore, two naturally occurring plaque-forming revertants were analyzed and shown to have restored protein processing phenotypes in vivo. Finally, the efficient production of prM was shown to be dependent on the proteolytic activity of NS3. These data support a model of two coordinated cleavages, one that generates the carboxy terminus of C and another that generates the amino terminus of prM. A block in the viral protease-mediated cleavage inhibits the production of prM by the signal peptidase, inhibits particle release, and eliminates plaque formation.

摘要

黄病毒多聚蛋白加工分析揭示,在C(衣壳或核心)蛋白的羧基末端存在病毒编码的NS2B-NS3蛋白酶的一个底物。该位点的切割与通过信号肽酶切割高效产生prM的氨基末端有关。黄热病毒在该切割位点的P1至P4位置有四个碱性残基(精氨酸-赖氨酸-精氨酸-精氨酸)。对这些残基进行了多个丙氨酸替代,以研究该切割的底物特异性和生物学意义。通过几种方法分析突变体:(i)用于直接分析NS2B-NS3介导切割的无细胞转加工试验;(ii)在BHK-21细胞中使用C-prM多聚蛋白进行的转加工试验,用于分析prM的产生;(iii)全长转录本的感染性试验,以确定噬斑形成能力;以及(iv)分析全长转录本表达的蛋白质,以评估在完整基因组背景下的加工情况。在体外和体内加工中表现出严重缺陷的突变体无法形成噬斑。在P1至P4区域内包含两个相邻碱性残基的突变体在体外和体内加工效率更高,携带这些突变的转录本具有完全感染性。此外,分析了两个天然存在的噬斑形成回复突变体,结果表明它们在体内恢复了蛋白质加工表型。最后,结果表明prM的高效产生依赖于NS3的蛋白水解活性。这些数据支持一个双协调切割模型,一个切割产生C的羧基末端,另一个切割产生prM的氨基末端。病毒蛋白酶介导的切割受阻会抑制信号肽酶产生prM,抑制颗粒释放,并消除噬斑形成。

相似文献

2
Formation of the flavivirus envelope: role of the viral NS2B-NS3 protease.
J Virol. 1995 Apr;69(4):1995-2003. doi: 10.1128/JVI.69.4.1995-2003.1995.
6
Zika Virus NS2A-Mediated Virion Assembly.
mBio. 2019 Oct 29;10(5):e02375-19. doi: 10.1128/mBio.02375-19.
10
Functional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease.
J Biol Chem. 2007 Apr 27;282(17):12883-92. doi: 10.1074/jbc.M611318200. Epub 2007 Mar 2.

引用本文的文献

1
Subcellular determinants of orthoflavivirus protease activity.
J Biol Chem. 2025 Jul 5;301(8):110451. doi: 10.1016/j.jbc.2025.110451.
2
UFMylation promotes orthoflavivirus infectious particle production.
J Virol. 2025 Jul 22;99(7):e0065425. doi: 10.1128/jvi.00654-25. Epub 2025 Jun 3.
3
Pathogenesis and clinical management of arboviral diseases.
World J Virol. 2025 Mar 25;14(1):100489. doi: 10.5501/wjv.v14.i1.100489.
4
UFMylation promotes orthoflavivirus infectious particle production.
bioRxiv. 2025 Jan 9:2025.01.09.632082. doi: 10.1101/2025.01.09.632082.
5
Dual-fluorescent reporter for live-cell imaging of the ER during DENV infection.
Front Cell Infect Microbiol. 2022 Oct 25;12:1042735. doi: 10.3389/fcimb.2022.1042735. eCollection 2022.
6
The Role of the Flavivirus Replicase in Viral Diversity and Adaptation.
Viruses. 2022 May 17;14(5):1076. doi: 10.3390/v14051076.
9
SPCS1-Dependent E2-p7 processing determines HCV Assembly efficiency.
PLoS Pathog. 2022 Feb 7;18(2):e1010310. doi: 10.1371/journal.ppat.1010310. eCollection 2022 Feb.
10
A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host.
Proc Natl Acad Sci U S A. 2021 Oct 19;118(42). doi: 10.1073/pnas.2113015118.

本文引用的文献

1
Signal sequences: more than just greasy peptides.
Trends Cell Biol. 1998 Oct;8(10):410-5. doi: 10.1016/s0962-8924(98)01360-9.
2
The native form and maturation process of hepatitis C virus core protein.
J Virol. 1998 Jul;72(7):6048-55. doi: 10.1128/JVI.72.7.6048-6055.1998.
4
trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication.
J Virol. 1997 Dec;71(12):9608-17. doi: 10.1128/JVI.71.12.9608-9617.1997.
5
Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin.
EMBO J. 1997 Nov 17;16(22):6636-45. doi: 10.1093/emboj/16.22.6636.
7
Regulated processing of hepatitis C virus core protein is linked to subcellular localization.
J Virol. 1997 Jan;71(1):657-62. doi: 10.1128/JVI.71.1.657-662.1997.
9
Regulation of the late events in flavivirus protein processing and maturation.
Virology. 1993 Jan;192(1):38-51. doi: 10.1006/viro.1993.1006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验