Suppr超能文献

1型人类免疫缺陷病毒Gag多聚蛋白多聚化需要核衣壳结构域和RNA,并由衣壳二聚体界面和基质蛋白的碱性区域促进。

Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein.

作者信息

Burniston M T, Cimarelli A, Colgan J, Curtis S P, Luban J

机构信息

Departments of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.

出版信息

J Virol. 1999 Oct;73(10):8527-40. doi: 10.1128/JVI.73.10.8527-8540.1999.

Abstract

The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Many gag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed in trans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.

摘要

1型人类免疫缺陷病毒(HIV-1)的Gag多聚蛋白指导从高效感染细胞中形成病毒颗粒。许多gag突变会破坏病毒颗粒的组装,但对于其中许多突变的生化效应知之甚少。Gag单体之间的蛋白质-蛋白质相互作用被认为是病毒颗粒组装所必需的,并且数据表明RNA可能会改变蛋白质-蛋白质相互作用,甚至可能作为连接Gag多聚蛋白单体的桥梁。为了评估HIV-1 Gag同源相互作用的一级序列要求,一组HIV-1 Gag缺失突变体在细菌中表达,并在体外评估其与全长Gag结合的能力。核衣壳蛋白是Gag的主要RNA结合结构域,其活性与完整多聚蛋白相当。在没有核衣壳蛋白的情况下,观察到相对较弱的活性,其依赖于衣壳二聚体界面和基质结构域内的碱性残基。通过一项实验证实了体外研究结果的相关性,在该实验中,评估了非肉豆蔻酰化突变体Gag被整合到由反式表达的野生型Gag产生的病毒颗粒中的能力。核糖核酸酶会损害Gag-Gag相互作用,以及HIV-1 Gag与远亲逆转录病毒编码的Gag和结构上不相关的RNA结合蛋白有效相互作用,这些都证明了RNA对Gag-Gag相互作用的重要性。这些结果与Gag多聚化涉及通过RNA桥的间接接触以及直接蛋白质-蛋白质相互作用的模型一致。

相似文献

2
The role of nucleocapsid of HIV-1 in virus assembly.
Virology. 1998 Nov 10;251(1):141-57. doi: 10.1006/viro.1998.9374.
3
9
Human immunodeficiency virus type 1 virion density is not determined by nucleocapsid basic residues.
J Virol. 2000 Aug;74(15):6734-40. doi: 10.1128/jvi.74.15.6734-6740.2000.

引用本文的文献

2
The Assembly of HTLV-1-How Does It Differ from HIV-1?
Viruses. 2024 Sep 27;16(10):1528. doi: 10.3390/v16101528.
3
HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence.
Health Sci Rep. 2024 Sep 23;7(9):e70089. doi: 10.1002/hsr2.70089. eCollection 2024 Sep.
4
The "basics" of HIV-1 assembly.
PLoS Pathog. 2024 Feb 1;20(2):e1011937. doi: 10.1371/journal.ppat.1011937. eCollection 2024 Feb.
6
Influence of HIV-1 Genomic RNA on the Formation of Gag Biomolecular Condensates.
J Mol Biol. 2023 Aug 15;435(16):168190. doi: 10.1016/j.jmb.2023.168190. Epub 2023 Jun 27.
7
Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity.
Acta Physiol (Oxf). 2022 Nov;236(3):e13886. doi: 10.1111/apha.13886. Epub 2022 Sep 20.
8
Relationship between HIV-1 Gag Multimerization and Membrane Binding.
Viruses. 2022 Mar 16;14(3):622. doi: 10.3390/v14030622.
9
Molecular genotypes of gag sequences in HIV-1 infected children treated with antiretroviral therapy in Vietnam.
Ther Adv Infect Dis. 2020 Sep 17;7:2049936120958536. doi: 10.1177/2049936120958536. eCollection 2020 Jan-Dec.

本文引用的文献

2
Assembly and analysis of conical models for the HIV-1 core.
Science. 1999 Jan 1;283(5398):80-3. doi: 10.1126/science.283.5398.80.
3
The role of nucleocapsid of HIV-1 in virus assembly.
Virology. 1998 Nov 10;251(1):141-57. doi: 10.1006/viro.1998.9374.
5
Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels.
J Virol. 1998 Aug;72(8):6430-6. doi: 10.1128/JVI.72.8.6430-6436.1998.
6
Organization of HIV-1 capsid proteins on a lipid monolayer.
J Biol Chem. 1998 Mar 27;273(13):7177-80. doi: 10.1074/jbc.273.13.7177.
7
Human immunodeficiency virus type 1 matrix protein interacts with cellular protein HO3.
J Virol. 1998 Feb;72(2):1671-6. doi: 10.1128/JVI.72.2.1671-1676.1998.
8
Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element.
Science. 1998 Jan 16;279(5349):384-8. doi: 10.1126/science.279.5349.384.
9
Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein.
Science. 1997 Oct 31;278(5339):849-53. doi: 10.1126/science.278.5339.849.
10
Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation.
J Virol. 1997 Sep;71(9):6765-76. doi: 10.1128/JVI.71.9.6765-6776.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验