Department of Biomedicine, University of Bergen, Bergen, Norway.
Mohn Research Center for the Brain, University of Bergen, Bergen, Norway.
Acta Physiol (Oxf). 2022 Nov;236(3):e13886. doi: 10.1111/apha.13886. Epub 2022 Sep 20.
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
早期基因 Arc 是突触可塑性、记忆和认知灵活性的关键调节因子。但是 Arc 蛋白是什么?它是如何工作的?在神经元内,Arc 是蛋白质相互作用的枢纽,也是突触可塑性中细胞内信号转导的动态调节剂。相比之下,Arc 也可以自我组装成逆转录病毒样衣壳,这些衣壳会被释放到细胞外囊泡中,并能够在细胞间转移 RNA。阐明 Arc 枢纽和衣壳功能的分子基础以及它们之间的关系对于取得进展至关重要。在这里,我们讨论了关于 Arc 结构-功能和寡聚化调节的最新发现,这些发现为我们深入了解 Arc 的分子生理学提供了线索。强调了哺乳动物 Arc 的独特特征,同时与果蝇 Arc 和逆转录病毒 Gag 进行了比较。只有在哺乳动物中发现的 Arc N 端结构域被认为在调节 Arc 枢纽信号转导、寡聚化和衣壳形成中发挥关键作用。综合几条证据,我们假设 Arc 在突触可塑性中的功能——长时程增强(LTP)和长时程抑制(LTD)——是由不同的 Arc 寡聚形式决定的。具体来说,单体/二聚体在 LTP 中起作用,四聚体在基础 LTD 中起作用,32 个单位的寡聚体在增强 LTD 中起作用。哺乳动物 Arc 衣壳的作用尚不清楚,但可能取决于捕获的神经元活动诱导的 RNA 的横截面。随着 Arc 功能状态的揭示,可能有可能选择性地操纵与大脑功能和功能障碍相关的特定形式的依赖 Arc 的可塑性和细胞间通讯。